Das Haus der Technik e. V. (HDT) veranstaltet seit Jahren erfolgreich eine hochkarätige Konferenz, die sich gezielt an Entwickler, Anwender und Forscher richtet – die internationale Tagung EEHE (Elektrik & Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement) und bietet somit ein professionelles Forum für einen kollektiven Austausch unter Akteuren und Experten auf folgenden Fachgebieten:

  • Leistungselektronik
  • Hochvolt- und Niedervolt-Energiespeicher
  • Ladetechnik und Bauteile für diese Anwendungen
  • Fragestellungen aus Elektromobilität
  • E/E-Systeme für Nutz- und Agrarfahrzeuge
  • Marktentwicklung und Regulierungen 
  • Stromversorgung für hochautomatisiertes oder autonomes Fahren.

dSPACE präsentiert seine Hardware und Software und Besucher haben die Möglichkeit, sich im Gespräch mit dem technischen Vertrieb von dSPACE über aktuelle Produktinnovationen zu informieren.
 

Als einer der Konferenzleiter wird dSPACE-Geschäftsführer Dr.-Ing. Carsten Hoff Sie durch die Veranstaltung begleiten.

Außerdem haben Sie die Möglichkeit, zwei Vorträge von dSPACE-Mitarbeitern zu folgenden Themen zu besuchen:

  • FPGA-based real-time HIL testing of multi-topology onboard charging systems
  • Model-based testing of state-of-the-art battery management systems

Last but not least präsentieren wir Ihnen auch eine Demo zum Thema Simulation von Leistungselektronik (Vienna Gleichrichter).

 

dSPACE CEO Dr.-Ing. Carsten Hoff
Presentation 1 (Day 2, 11:00):
FPGA-Based Real-Time HIL Testing of Multi-Topology Onboard Charging Systems
Dipl.-Wirt.-Ing. Julian Saele

Presentation 1 (Day 2, 11:00): FPGA-Based Real-Time HIL Testing of Multi-Topology Onboard Charging Systems

 

The electrification of traffic is a major trend which is still at its beginning. The future increase of electric vehicles also means an increase of electric power needed to charge them. To store the energy in the vehicle, all kinds of inverter and converter topologies based on power electronics are used for rectification and conversion.

Extensive testing and validation of the controllers of converters is key to guarantee the reliable charging of electric vehicles as well as to preserve stable electrical grids. Testing one device at a time is state-of-the-art, which aims at identifying flaws and eventually validate that single device. However, this approach does not consider entire systems which consist of several converters. As a result, the controllers of inverters and converters not only need to control the corresponding power electronics circuits, but they also need to be prepared to face these effects with the appropriate control strategies. To validate this behavior, system-wide real-time simulation and testing is strongly recommended.

In this presentation an approach for system-wide, signal-level testing of controllers of abovementioned power electronics circuits in real-time is presented. The presented system starts at the low voltage transformer of the utility and covers, among others, filters, bi-directional AC/DC converters, on-board bi-directional DC/DC converters and loads. It shows how the simulation model of one of the converter circuits is developed and what the requirements are. It also includes the implementation of that system on an FPGA-based real-time hardware-in-the-loop (HIL) system. The presentation is completed by the results of the HIL simulation.

 

Presentation 2 (Day 2, 12:00):
Model-Based Testing of State-of-the-Art Battery Management Systems
Dipl.-Ing. Markus Plöger

Presentation 2 (Day 2, 12:00): Model-Based Testing of State-of-the-Art Battery Management Systems

 

The Battery is one of the most important components in electric vehicles, where it is used to store electric energy and to power the propulsion system.
For a maximum lifetime, it is important to keep each battery cell within a certain state of charge (SoC) window. In this window, the cell voltages differ only by just a few mV.
The task of the battery management system (BMS) is to operate the battery in the best possible way to achieve ensure safety and maximum lifetime.
This includes tasks like measuring the voltages of each cell and the cell stack temperatures very precisely. Another important function is cell balancing, which means efficiently always keeping the state of charge each individual cell at the same level.
To achieve even shorter development times while also continuing to increase the number of functions and software, developers increasingly test the BMS control units with different levels of model-based methods.
Testing a BMS with high voltages means testing the entire BMS, including all CSC modules with actual cell voltages.
When testing on the signal level , only the BMS itself is the device under test and all CSC are simulated.
The third option is completely virtual software-in-the-loop (SIL) testing . The BMS and the CSC are the systems under test ¬ not the actual hardware, but virtual ECUs.

The simulation hardware must consist of galvanically isolated voltage sources of approx. 0 – 6 V with an accuracy of better than 1 mV. To realize passive or even active balancing, the cell voltage hardware must provide currents of a few A. For signal-based testing, the HIL system must simulate the communication between the BMS and CSC to simulate the CSC. In the HIL system, this requires fast specific FPGA-based implementations.
A crucial part of test systems for vehicle control units is the simulation model of the corresponding system plant. To validate a BMS controller, the simulation model has to replicate the cell-wise voltage and temperature behavior. Furthermore, all relevant switches to (dis)connect the battery terminals to/from the electrical network of the vehicle have to be represented. In addition to simulation features, modularity plays an important role to realize different battery pack topologies.
To validate the simulation model behavior in advance and to continue test preparation tasks also in absence of the final controller, a suitable soft ECU should be provided. All these attributes must be fulfilled while ensuring performance, to allow for fast cycle times in SIL setups and real-time capability in HIL test conditions.

 

Weitere Informationen

Treiben Sie Innovationen voran. Immer am Puls der Technologieentwicklung.

Abonnieren Sie unser Expertenwissen. Lernen Sie von erfolgreichen Projektbeispielen. Bleiben Sie auf dem neuesten Stand der Simulation und Validierung. Jetzt dSPACE direct und dSPACE direct aeropace & defense abonnieren.

Formularaufruf freigeben

An dieser Stelle ist ein Eingabeformular von Click Dimensions eingebunden. Dieses ermöglicht es uns Ihr Newsletter-Abonnement zu verarbeiten. Aktuell ist das Formular ausgeblendet aufgrund Ihrer Privatsphäre-Einstellung für unsere Website.

Externes Eingabeformular

Mit dem Aktivieren des Eingabeformulars erklären Sie sich damit einverstanden, dass personenbezogene Daten an Click Dimensions innerhalb der EU, in den USA, Kanada oder Australien übermittelt werden. Mehr dazu in unserer Datenschutzbestimmung.