
Optimal 
   Air-fuel 
Optimal air-fuel ratio is a key challenge and keeps 
coming up as an open issue for the engine control 
community. Since the 1980s, the transition from 
carburetors to electronically controlled injection 
systems has been motivating researchers to 
concentrate on this topic. Proper control of the 
air-fuel ratio is greatly benefi cial to the performance 
of three-way catalysts in both steady and transient 
operations. This control task therefore plays a 
fundamental role in limiting exhaust emissions in 
SI, GDI and lean-burn engines.

Neural networks for 

Engine test bench equipped with 
lambda sensors in the exhaust pipe.
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Ratio

air-fuel ratio control performed by MicroAutoBox

Requirements For 
Air-fuel Ratio Control
Despite the considerable efforts made 
in limiting exhaust emissions, the 
increasingly stringent environmental 
regulations imposed throughout the 
world still make achieving a satisfac-
tory air-fuel ratio an ambitious goal. 
Furthermore, engine control system 
designers have to deal with the 
onboard diagnostics requirements, 
introduced in 1996 in the US and 
later in Europe. This represents a 
more critical goal in the fi eld of auto-
motive control, since it requires the 
continuous monitoring of all power-
train components to prevent critical 

faults in exhaust systems. Air-fuel 
ratio (AFR) control presently relies on 
a mean value engine model represen-
tation. But these mean value models 
have some signifi cant limitations, 
such as the high level of experiments 
needed for parameter identifi cation 
and the intrinsic non-adaptive fea-
tures. On the other hand, the AFR sig-
nal delay is a very critical issue to be 
mastered to improve the performance 
of closed-loop control strategies.
Neural networks are a promising so-
lution for these challenges. They have 
high mapping capabilities and guar-
antee a good generalization even 
with a reduced set of identifi cation 

data. Moreover, by implementing 
adaptive training procedures we can 
consider the infl uence of exogenous 
effects on the control performance.

Developed Control Strategy
The AFR control strategy is based on 
a recurrent neural network (RNN). 
The neural network is used as a 
controller and its output directly 
determines the control actions. 
A forward RNN model (FRNNM) of 
AFR dynamics was developed. This 
took into account the fact that the 
dynamic processes affecting the AFR 
response depend on both air and fuel 
dynamics. Therefore the output, 
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Experimental setup with the controller: 
The control strategy is made up of two RNNs, describing inverse (IRNNM) and forward (FRNNM) dynamics.

actions as a function of the desired 
output at the next time step. The 
more accurate the FRNNM prediction, 
the less the difference between the 
FRNNM and plant outputs.

Experimental Setup
The developed control strategy was 
trained and tested vs. transient data 
sets measured on an engine test 
bench. The lambda sensor was 
placed right after the exhaust valve 
of the fi rst cylinder to investigate the 
air-fuel mixing process in one cylinder 
only. This choice allows the dynamic 
effects induced by gas transport and 
mixing phenomena occurring in the 
exhaust pipes to be removed. Non-
predictable effects generated by 
cylinder-to-cylinder unbalance due to 
uneven processes such as air breath-
ing, thermal state and fuel injection 
can also be neglected. Therefore, the 
time shift between the injection tim-

ing and the lambda sensor measure-
ment mostly accounts for the intake 
and exhaust valve phasing. As men-
tioned before, the time delay could 
be a signifi cant problem for control 
applications. 
For the real-time application the con-
troller was modeled with MATLAB®/
Simulink® and then uploaded to a 
dSPACE MicroAutoBox. This compact 
prototyping system lets all engine 
tasks be controlled directly and 
customized variants of the controller 
be performed immediately. The direct 
controller is intended to provide the 
actual injection time by processing 
actual and earlier measurements of 
the engine speed and manifold 
pressure, and the earlier prediction of 
AFR performed by the FRNMM. 
Furthermore, the target AFR was 
imposed and was set to the stoichio-
metric value (i. e. 14,67) for the cur-
rent application. Due to the lambda 

control and external input variables 
are: AFR, injection time, engine 
speed, and manifold pressure. The 
output feedbacks are simulated by 
the network itself, so the FRNNM 
does not require any AFR measure-
ment to perform the online estima-
tion. This makes the controller a suit-
able solution for AFR virtual sensing 
when the lambda sensor does not 
guarantee an accurate measurement, 
which happens during cold start 
phases. It also allows the delay due 
to engine cycle, transport phenomena 
and sensor response to be removed.

Neural controller
The control actions are computed by 
an inverse RNN model (IRNNM) as a 
function of sensor measurements of 
engine states and external inputs. 
The output values predicted by the 
FRNNM are fed as feedbacks to the 
IRNNM which evaluates the control 
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“ We replaced the ECU with a dSPACE Micro-
AutoBox. It allowed us to control all engine 
tasks and easily customize the control laws.” 

Cesare Pianese, University of Salerno

Glossary

Air-Fuel Ratio (AFR) – Mass ratio of air 
to fuel present during combustion. 
It is an important measurement for 
anti-pollution and performance tuning. 
Lambda (�) is the alternative expression 
for the AFR. For pure octane the 
optimal ratio is � = 1.00 (stoichiometric 
mixture of air to fuel 14,67:1).

Lambda Sensor – Also known as oxygen 
sensor. It monitors the amount of 
oxygen in the exhaust, so the ECU can 
determine how rich or lean the fuel 
mixture is and make adjustments if 
necessary.

Neural Network – Made of individual 
units named neurons. Each neuron has 
a weight associated with each input. 
A function is then generated as output. 
Typically the neurons are connected 
together with an input layer, an output 
layer and one or more hidden layers. 
Recurrent neural networks (RNN) are 
derived from the static networks by 
introducing feedback connections 
among the neurons. A dynamic effect 
is introduced into the computational 
system by a local memory process. 
Advantages of RNNs are that they can 
be sensitive and adapted to past inputs.

The developed control strategy is very accurate because it follows the target AFR faster and 
more precisely than the native ECU does.

Recurrent neural network (RNN).

sensor location, the controller was 
tested on the fi rst cylinder only, while 
a classical map-based injection strat-
egy was used for the three remaining 
cylinders.

Results for the Direct Controller
The trained IRNNM simulates the 
inverse AFR dynamics as accurately as 
the FRNNM does for the forward 
dynamics. Online tests on the devel-
oped RNNs were performed by 
integrating the FRNNM and IRNNM 
in the framework of a MicroAutoBox, 
resulting in the neural controller 
structure.

Conclusion
The virtual sensor (the FRNNM) ad-
equately predicted the AFR dynamics 
with an estimation error vs. the mea-
sured trajectory lower than 2 % for 
most of the test transients, even 
when wide AFR spikes were present. 
This proves that the RNN dynamic 
behavior is satisfactorily close to the 
real system dynamics.
The controller, which also uses the 
virtual sensor prediction, was imple-
mented on the ECU and tested over 

an experimental transient. The com-
parison with the AFR trajectory 
resulting from the action of the refer-
ence ECU shows that the controller 
performs well. In particular, the 
integration with the virtual sensor 
prediction induces a higher-order 
response that results in a faster AFR 
compensation and, particularly, in the 
removal of the overshoot observed 
by the ECU. In this context the 
MicroAutoBox was a great help, since 
its high computing power always 
ensured suffi cient headroom for the 
real-time execution of the complex 
algorithms. The results demonstrate 
that neural controllers have a great 
potential for improving engine 
control strategies, especially since 
they signifi cantly reduce the amount 
of experimentation and calibration 
needed by other current methods.  
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