
All you

CAN test
From CAN Set-up to Real-Time Test

PAGE 42 CAN BUS

Automotive applications in the fi elds
of rapid control prototyping (RCP)
and hardware-in-the-loop (HIL)
simulation typically use a CAN bus.
Depending on the application area,
either the controller or the con-
trolled system is represented by a
real-time model which also includes
the CAN communication. This bus
is confi gured with the RTI CAN
MultiMessage Blockset using a data
basis (such as a DBC fi le) that defi nes
CAN bus signals and messages.
The blockset provides a graphical

user interface for Simulink® (fi g. 1),
from which users can select the
necessary Rx (receive) and Tx (trans-
mit) messages. This procedure
provides a basic confi guration of the
CAN bus modeled in the real-time
model. Variant hand ling, trans-
mission control and various signal
manipulations can also be confi g-
ured. This confi guration is particu-
larly relevant to HIL applications, as
it generates (within the real-time
application) the dynamic interven-
tion points to be used later for

The RTI CAN MultiMessage Blockset from dSPACE
is a proven tool for representing large CAN set-ups
fl exibly and conveniently. It can now be integrated
into ControlDesk via the CAN Navigator and also
supports real-time testing, allowing users to switch
seamlessly between developing and testing. This
article describes a typical multi-tool workfl ow.

PAGE 43

testing and automating the HIL
simulator’s CAN communication.
CAN monitoring in ControlDesk and
CAN support for real-time testing
are also prepared within the
blockset.

CAN Navigator Is the
Control Center
In ControlDesk, the CAN Navigator’s
tree is the central access point for
handling CAN. The process of
generating code for the real-time
model supplies all the data needed
for producing the tree: the user just
has to insert a reference to the
application in ControlDesk and the
tree fi lls automatically (fi g. 2). The
tree then displays a consistent
confi guration of the CAN communi-
cation as defi ned in the model and
confi gured with the RTI CAN
MultiMessage Blockset.

The tree visualizes all the CAN con-
trollers contained in the model with
their assigned DBC fi les, and the
CAN messages with their signals.
During run time, it can be used to
switch between variants of the CAN
controller’s DBC confi guration. In
addition to generating these layouts
from the CAN MultiMessage
Blockset in advance with Python, as
was previously the case, users can
now generate the layouts from the
tree whenever they are needed –
no Simulink installation is necessary

(fi g. 3). The layouts directly mirror
the send and receive confi gurations
of the messages and signals in the
real-time model. Typical examples of
such generated layout elements are
input fi elds for setting the cycle
and time buttons for transmitting
messages sporadically.

Analyzing Communication
Global layouts can be generated to
handle the transmission control of
multiple messages simultaneously. In
the CAN Navigator, it is also possible
to create layouts for the online con-
fi guration of CAN gateways – this is
not possible in the blockset. There
is a CAN monitoring window with
various views (fi g. 4, fi g. 5) and sort
options for comprehensive analysis
of communication behavior.
Monitoring can either be based on
raw data or be performed symboli-
cally with the current DBC reference.

The messages selected for monitor-
ing can be restricted via freely
defi nable and savable fi lter rules, but
it is also possible to visualize the
entire CAN traffi c. Pass and stop
fi lters can be applied selectively to
IDs, ID ranges and ECUs and can
also be combined. The messages
visualized in the CAN monitoring
window can also be saved to a fi le
(*.csv or *.asc). This fi le can be used
as the starting point for precisely-
timed CAN replays of the CAN

communication. For example, com-
munication data recorded during
real test drives can easily be repro-
duced in a restbus simulation on the
HIL simulator as often as required.

Testing under
Real-Time Conditions
For more complex test scenarios,
there is Real-Time Testing (RTT) for
the Python-based development of
real-time test scenarios. In this, the
tests run time-synchronously to
the real-time model, and read and
write access can be performed to all
model variables in each simulation
clock cycle.

If the real-time tests have to access
the CAN bus, they are developed
via a special library (canmmlib) for
reading and writing raw-data-based
messages. The necessary messages
are added to the model by means of
the RTI CAN MultiMessage Blockset
and are then available in transparent
form for real-time tests or for
CAN replays of the CAN Navigator.
The advantage is that changes to
the CAN database or the model
structure do not affect the execut-
ability of the real-time tests.

An example test scenario is the
monitoring of one of the HIL simula-
tor’s analog input signals. When a
defi ned trigger threshold (for
example, 14.7 V) is exceeded, a

Fig. 1: Selecting model signals for transmis-
sion via the RTI CAN MultiMessage Blockset.

Fig. 2: The CAN Navigator is the central
access point to handle CAN in ControlDesk.

Fig. 3: Tx layouts can be generated directly
from the CAN Navigator.

PAGE 44 CAN BUS

Input_Voltage [Volt]

t

CAN-Msg #1
t = 500 ms

CAN-Msg #2
t = 550 ms

CAN-Msg #3
t =600 ms

14,7 Volt

50 ms 50 ms

20

15

10

5

0

1.

2.

3.

4.

5.

6.

Fig. 6: Example scenario: Monitoring a model signal and its reaction with triggered,
cyclic CAN communication.

predefi ned CAN message has to be
sent cyclically every 50 ms until
the value goes below the threshold
again (fi g. 6). The associated
real-time test implementation is
explained in the text inset.

Multi-Tool CAN Handling
The versatile confi guration options
provided by the RTI CAN Multi-
Message Blockset ensure that CAN
communication is confi gured
consistently across multiple tools.
It covers all the application scenarios
that are typical of ECU testing, such
as interactive experimentation,
CAN monitoring and replay, and

automated restbus simulation.
Thus, dSPACE provides a complete,
fl exible, convenient solution for
editing CAN communication. Such
solutions will be available for other
bus systems in the near future.

Real-Time Test Implementation of
the Example Test Scenario
In the real-time test, the send data of
the CAN message can be defi ned freely
via Python programming. This means
that real-time tests can include test-
case-specifi c CAN behavior that is not
intended to be a permanent part of the
real-time model. Real-time testing is
therefore an ideal supplement to the
static (model-defi ned) CAN confi gura-
tions of the RTI CAN MultiMessage
Blockset. The ability to load several real-
time tests independently of one another
and execute them simultaneously
ensures maximum scalability in imple-
menting restbus simulation. The
bandwidth reaches from simple, reactive
real-time observers (as in the example)
to extensive test sequences that are
executed completely on the real-time
hardware.

1. Import real-time testing libraries
(canmmlib, etc.)

2. Generate the variable object of the voltage
to be monitored

3. Select the CAN send controller

4. Defi ne the Send message with the
real-time test

5. Help function for precise time measurement
(for later transmission of CAN messages at
exact time intervals)

6. Real-time test sequence: Check the voltage
once per simulation step and react by sending
a cyclic CAN message

Fig. 4: Static monitor view with the decoded
contents of CAN message TIRE_INFO.

Fig. 5: Continuous monitor view (here sor-
ted according to the time received).

PAGE 45

