
ContinentalPage 12

 Shift Gears
Quickly

Processes and methods for using TargetLink in model-based
development of transmission function software

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

Page 13

The goal is to noticeably
reduce the development
time of prototypes and
end products. To meet
this, innovative methods
for developing embedded
software are necessary.
That is why years ago,
Continental AG decided
to introduce model-based
development and
production code
generation for developing
transmission electronic
control units (ECUs). This
article shows the big
picture, from working
out the processes and
methods, to the successful
use of the code generator
TargetLink in two
production projects.

During the past decade, enormous
demands were placed on the
development of embedded
software. On top of the traditional
process of manual coding and
software tests, more stringent
requirements regarding safety
standards and development
methods have now entered the
scene. The continually increasing
complexity makes these require­
ments even more demanding,
especially with regard to the control
of the new transmission generation
with double clutch transmission
(DCT) and continuously variable

Processes and methods for using TargetLink in model-based
development of transmission function software

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

Designing the Processes
and Methods
As part of an internal project, first
the necessary process steps were
drawn up, in order to start off the
model-based design and automatic
production code generation. The
following requirements were placed
on the model-based design to cover
the complete V-cycle for the func­
tion and software development,
with regard to the interaction be­
tween the OEMs, transmission and
electronics suppliers (see fig. 1):

n �Model the physical requirements
of the ECU

n �Simulate the actual ECU behavior
(tasks, execution order, operating
system)

n �Support distributed development
by setting up a multi-user
environment

n �Verify, validate and archive the
models, code and scripts by adapt­
ing them to the traditional process

First, the model-based development
method was applied to functional­
ities in demo vehicles. The preferred
solution that arose was to use

established tools based on the
latest technology. Thus, MATLAB®/
Simulink® were selected for the
function design. The success of the
project depended greatly on
whether the demonstration of new
functionalities in demo vehicles
could be completed within just a
short time frame. The simulation of
concepts, and the subsequent test
and verification were performed by
model-in-the-loop (MIL) simulation
on the PC. After successful verifica­
tion, the function was ready for
tests in the demo vehicle and on
the test bench with the rapid con­
trol prototyping (RCP) environment.
For a fast validation and fine-tuning
of the functions, Real-Time Work­
shop® and dSPACE AutoBox/Micro­
AutoBox were used. Front-loaded
tests made it possible to assess
the customer‘s requirements quite
early. After model-based develop­
ment was used successfully in the
rapid prototyping phase, the
V-cycle phase was to switch from
manual C coding to automated
production code generation.
dSPACE TargetLink was selected
as the code generator for this step.

The double-clutch transmission combines the energy efficiency of a manual transmission with the comfort of torque converter transmission.

transmission (CVT). In addition,
automotive industry suppliers are
constantly looking for new ways to
shorten development times – as the
market demands. As a result, the
Business Unit Transmission at
Continental AG performed a study a
few years ago, which analyzed the
application of model-based design
and production code generation. The
potential productivity increase result­
ing from this innovative, model-
based method was initially assessed
by using the method as an internal
project. At the same time, the pro­
cess, methods and tools for model-
based design, including automatic
code generation, were defined and
adapted to the specific needs of the
Business Unit Transmission.
After being used successfully in the
first production project, the entire
application software of a double
clutch transimission was developed
with this tool chain. This article
describes the individual development
steps and experience gained from
the initial tests, the first production
projects, and the double clutch trans­
mission, which was autocoded en­
tirely with TargetLink.

Page 14 Continental

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

Fig. 1: The development cycle in the Business Unit Transmission.

Vehicle
requirements

Transmission
 requirements

Electrical
 system

 requirements

Software
limits

Model optimization

Model
release

Automatic
code generation

Unit test

 System validation

 System
integration

 Integration
electrical
system

 Integration
test

 Function
MIL
RCP
SIL

Function
MIL
RCTO

EM

Tr
an

sm
is

si
on

 s
up

pl
ie

r

El
ec

tr
on

ic
s

su
pp

lie
r

“�For the project performed with TargetLink,
the time-to-market was even shortened,
which our customer applauded.“

Georg Grassl, Continental AG

To prove the feasibility of automatic,
optimized code generation for
a 16-bit microcontroller, a position
control algorithm for a transfer case
transmission was used. First, the
already existing function was trans­
ferred into a model-based design
and then expanded with implemen­
tation information for production
code generation. Then the auto­
matically generated code was
integrated and validated on the
production ECU. To prove the
efficiency of the generated code,
its resource consumption was
compared with that of manually
coded software already used in
series production.
Finally, on the basis of these prelimi­
nary tests, the important process
elements for generating production-

intent software with the new
development method were identi­
fied. The following section
illustrates these process elements
in closer detail, including a few
supportive methods:

Model-Based Function Design
By simulating Float models it is
possible to quickly evaluate
whether the functional require­
ments can be met. This step is then
followed by rapid prototyping to
validate the functional requirements
in a demo vehicle. It is necessary
to define the function architecture
at an early state, together with
the resulting generation of model
libraries, so that partitioned
development can be achieved and
the configuration elements created.

In addition, the modeling guide­
lines for the function and software
also contribute towards making the
compatible, model-based design
possible. Industrial standards
regarding adherence to in-house
guidelines are evaluated and, if
necessary, project- and application-
specific agreements are added.

Model-Based Software Design
Model-based design templates to
generate optimized target code
are introduced and must already
be adhered to during the function
design stage. This is in close connec­
tion to the standards established by
MISRA (Motor Industry Software
Reliability Association) and the tool
manufacturers: for example, the
MISRA AC TL guidelines. Designing
software means scaling, defining
block properties, adapting the
configuration of the code generator
and thereby supporting the auto­
matic code generation. The so-called
implementation model is made when
the implementation information
(memory assignment, etc.) is added.

Page 15

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

Fig. 2: Model-based testing – design and code verification.

Functional
requirements

Model-based
function design
(floating point)

Model-based
software design

(fixed point)

C code on
target hardware

Model-based
function design
(floating point)

Model-based
software design

(fixed point)

Tool Chain

Scaling

Requirements

Ve
rif

ic
at

io
n

of
 th

e
de

si
gn

Ve
rif

ic
at

io
n

of
 th

e
co

de

At this the point the software archi­
tecture needs to be defined early, in
congruence with the function archi­
tecture. The result is the partitioning
into C modules and C functions,
which enables the testability,
configuration (archiving) and
maintenance.

Model-Based Collaboration
Tight collaboration between all
involved parties at the model

level is necessary to ensure that
the models are designed and
exchanged consistently. Complex
functionalities are partitioned into
smaller units and placed in model
libraries. Documentation that is
based on the models replaces the
traditional, hand-written software
requirements specifications.

code generation. The modeled
algorithm – a subfunctionality of the
application software – is a gear-shift
strategy for a six-stage automatic
transmission (see fig. 3) that should
be used for a 16-bit platform. Due
to their success in the preliminary
studies, MATLAB/ Simulink and
dSPACE TargetLink were used in
accordance with the previously
developed processes and methods.
The test of the function software
was performed according to
conventional quality assurance
procedures, which were already
defined for the written C-code and
adjusted to fit the conditions of
automatic code generation.
To ensure compatibility with in-
house code rules, a static code
analysis was performed. At model
level, structural coverage tests were
performed and supported by tools
for test vector generation. Thus,
the quality goal of reaching 100%
coverage of the fixed-point
code (highest test coverage level:
modified condition/decision
coverage, MC/DC) was achieved.
These module tests were per­
formed with a standard tool that
can simulate the microcontroller
platform. Thus, the complete tool
chain (code generator, compiler
and linker) was verified success­
fully.

Results and Insights from the
First Production Projects
The method we chose ensures that
the tasks were performed at the
required time, thereby supporting the
stringent time frame. As a result, the
time-to-market for this project was
even shortened, which our customer
applauded. Furthermore, the devel­
oped transmission software had to
adhere to tight restrictions regarding
resource consumption:

n �a maximum CPU utilization
of 15 %

“�Within the framework of an in-house
study by the OEM, the result was that the
handwritten code cannot measure up to
the code generated by TargetLink in terms
of freedom from error.”

Georg Grassl, Continental AG

Model-Based Testing
To optimize the process, especially
via automation, model-based test­
ing and the corresponding quality
measures are essential. The standard
software quality measures are
modified. This makes quick, micro-
V-cycles possible, resulting in fast
progress towards model maturity.
Model-based testing offers the
possibility of a step-by-step
approach (see fig. 2).

First Production Application of
the New Process and Methods
Based on the results of the prelimi­
nary studies mentioned above,
the first high-volume project was
started with a defined, well-
coordinated cooperation between
the partners in all areas concerning
model-based design and automatic

ContinentalPage 16

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

n �a maximum ROM assignment
of 100 kByte

With TargetLink, the values stayed
far below these levels, whereas the
size of the automatically generated
function software was:

n �maximum 10 % CPU assignment
n �60 kByte compiled code
n �50 modules
n �20 % ROM assignment of the

entire application software

It became clear that the software
freeze of the applied code gene­
rator version had to be performed,
at the latest, when the software
quality measures and code verifi­
cation began. Any update to the
code generator can lead to altered
source code, which would make it
necessary to repeat all software
tests and quality measures.
Within the framework of an
in-house study by the OEM, the
result during validation was that
the handwritten code cannot mea­
sure up to the code generated by
TargetLink in terms of freedom
from error. By using model-based
development and automatic code
generation we were able to make

an exceptionally high number of
software deliveries precisely on
schedule, thanks to the structured
process for this new method. The
method was sent to other users at
different locations to be used as
the standard method for transmis­
sion projects.

Development of the
Function Software
for Dual Clutch Transmission
In 2006, due to the positive
experience when using the new
methods and processes, we started

the production development of
hardware and software for a DCT
transmission ECU (see fig. 4). The
entire function software for this
was created by using model-based
development and automatic code
generation with TargetLink.
The tasks were divided as follows:

n �The OEM makes the function
requirements.

n �Continental makes the model-
based function design available,
validated by using rapid control
prototyping.

Fig. 3: Gearshift strategy – structure and signal flow.

Objects
quantities

Measured inputs:
 Gas pedal
 Engine speed
 Gear
 Brake

Subjective
quantities

Online adaptive
fuzzy system

Dynamic:
 Curve value
 Brake value
 Deceleration
 value

Static:
 Driver value
 Load value

Base gear
characteristic curve

(Eco, Sport, Load)

Static gear

Dynamic gear

Last gear

Gear characteristic
curve interpolation

Dynamic
correction

Safety and
plausibility

Calculated inputs:
 Acceleration
 Gradients
 Torque
 Filtered signals

Driver

Load

Curve

Brake

Deceleration

The electronic control unit for double clutch transmission has to pass specific qualification
tests in the Continental Automotive systems lab.

Page 17

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

“�Using model-based development and
automatic code generation led to an
exceptionally high number of software
deliveries precisely on schedule.”

Georg Grassl, Continental AG

Fig. 4: DCT schematics.

Gear
actuator 3

Gear
actuator 2

Gear
actuator 4

Transmission
input shaft 1

Transmission input
shaft 2

Output shaft
differential /
wheels

Gear
actuator 1

Clutch
actuator 2

Torque

Clutch
actuator 1

Gear
Gear

actuator 4

Transmission
input shaft 1

ransmission input
shaft 2

Output shaft
differential /
wheels

Gear
actuator 1

Clutch
actuator 2

rq

Clutch
actuator 1

TTor

n �Continental, supplier of the
transmission ECU, makes the
hardware and software available
(incl. the model-based software
design, automatic code genera­
tion, model-based tests, and
quality assurance).

n �The OEM and Continental
perform the system integration
and validation of the function
in the vehicle via hardware-
in-the-loop simulation.

The handling of the process
elements, the corresponding
methods for model-based develop­
ment, and the automatic code
generation for this DCT project
were similar to the handling of the
first production project. During
the project’s run time, additional
challenges arose due to the
complex DCT functions:

n �Function reuse
n �Adapted code generation for

device-specific calibration methods
n �Partitioned design in a multi-user

environment

The following three sections briefly
describe how these challenges
were met.

Function Reuse
When looking at a DCT system, it
becomes clear that two clutches
and four gear components call for
the reuse of functions (see fig. 4).
The limited hardware resources
make reuse an even greater
necessity. Actuator functions for
two clutches, two shafts and four
gear actuators must use a common
algorithm.
Simulink libraries are also used in
this project for low-level functions
(i.e. filter routines), resulting in
“nested reuse”. The requirements
are fulfilled by TargetLink’s Function
Reuse feature, which made it pos­
sible to reduce the resource con­
sumption. Since developers are
aware that the functions can be
reused, they can take this into ac­
count when designing the model
architecture.

Adapted Code Generation
for Device-Specific Calibration
Methods
In order to cut development costs
in this project, a specific calibration
method for electronic control units
was to be implemented without
calibration devices and/or memory
expansion. As a result, a set of
calibration data is organized as a
structure, and access to this during
run time is carried out by rerouting
the pointer to the structures from
the ROM to the RAM. To imple­
ment the necessary code pattern,
TargetLink features such as variant
coding and templates were used on
the one hand (see fig. 5). On the
other, we worked together with
dSPACE to make changes in the
code generator. The conversion of
the entire DCT model to these
specific calibration methods was
completed within just one week,
which proves how high the per­
formance of the open program
interfaces delivered by the code
generator truly is.

Partitioned Design in a
Multi-User Environment
In this project, the function design
was performed by Continental as
well as by the OEM involved. The
high number of involved develop­
ers was much too large for the pre­
viously used single-user method, so
the developed processes had to be
expanded to meet multi-user
capability. To be specific, large
functionalities were partitioned
into smaller model fragments and

Page 18 Continental

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

Software
package

*.mdl *.mat *.dd *.m *.doc/xml/...

Model (function and
software design)

Test
vectors

Data
description

Initialization/
configuraiton

data

Test report,
calibration
guidelines

Auto
code

Fig. 5: Definition of a pointer to data variants by using a variable template and assigning
variants to parameters.

Fig. 6: Software package for multi-user environments.

managed in Simulink model
libraries. To keep the data within
the environment consistent, the
multi-user support offered by the
include files of the dSPACE Data
Dictionary was used.
The Transmission Team decided
to keep the model, the data
description, the test vectors
(functional and structural), the test
areas, and the fine-tuning guide­
lines as a package (see fig. 6) in
the configuration management.
This smoothes the way for reuse in
other projects and for consistent
development.

Results and Important Findings
Thanks to the previously developed
processes and methods, 100 % of
the DCT project’s function software
could be developed on the basis
of models and autocoded with
TargetLink. The function software
that arose in this high volume
project amounted to:

n �250 kByte compiled code
n �120 model libraries

Considering the challenges and
corresponding solutions described
above, it was important that
we could place our trust in the
cooperation with those who
delivered the code generator. This
was especially true for the specific
support inquiries the project team
had regarding memory assignment,
data variants, and how robust
the code generator could be. For
model-based development,

including automatic code genera­
tion, it was also helpful to have
the updates and patches for the
code generator synchronized with
the project’s software tasks.

Looking Ahead
With the know-how gathered by
using the project-specific approach
for a model-based design and
automatic code generation, the
Transmission Team is now ready
to use this method for low-level
software (actuator control). In
addition, we are working on moving
from a project-specific approach to­
wards a platform approach, while
still maintaining quick methods. This
way, we can support the worldwide,
in-house introduction of the devel­
opment method, and still maintain
consistency.

Georg Grassl
Business Unit Transmission
Gerd Winkler
Business Unit Engine Systems
Continental AG
Germany

Page 19

Summary

The Business Unit Transmission
implements a seamless method for
model-based development and
automatic code generation. The
development phases are closely
connected with one another by an
executable specification (a model).
Meanwhile, the entire function
software for the DCT is implemented
by using model-based design and
automatic code generation. By
working together with the OEMs,
the Business Unit Transmission is able
to set up an efficient process for
developing function software.

The tool chain used for this method
already proved its worth for high
volume projects. The process is based
on reliable elements from projects
with conventional development
methods, which were then adapted
to the meet the requirements of
model-based development and auto-
matic code generation. This made
it possible to introduce the new
methods efficiently.

The process was done step-by-step:
first, an internal project to implement
the new methods; then the initial pro-
duction project with a 20% share of
the autocoded application software;
finally, the highly complex DCT trans-
mission with 100% automatically gen-
erated application code.

Using this new method resulted in
immediate quality improvement.
When comparing identically complex
projects, one using traditional
development methods and the other
using model-based development with
the resulting options (rapid proto
typing, automatic production code
generation, model-based testing), it
becomes quite evident that model-
based development is clearly superior
to traditional methods.

dSPACE Magazine 2/2008 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

