
dSPACE
NEWS

3/2006 * dSPACE GmbH * Technologiepark 25 * D-33100 Paderborn * Germany * info@dspace.de * www.dspace.de

PRODUCTS

Tracking Down
Run-Time Errors
Generating the actual function code is not the only way in which TargetLink, the production
code generator, helps engineers to develop software for electronic control units. TargetLink
users have a wide range of tools for verification and validation at their fingertips – partly
in TargetLink itself, and partly in extension solutions like MTest. Another innovative tool
has just joined these: the TargetLink-PolySpace integration, which offers protection against
run-time errors.

The Sources of Run-Time Errors
Even though no human programmer can ever attain

the degree of correctness of automatic production

code generators, the code that these generate is not

necessarily free of run-time errors. The reason for this

is that errors can creep in during model design, while

the function is still being developed. For example,

if there is no protection against division by zero or

out-of-range values at model level, the code that is

generated may contain run-time errors, as any poten-

tially erroneous specification is translated into code

1:1. Run-time errors like these have their sources at

model level and should preferably be eliminated at

that level. The TargetLink-PolySpace integration greatly

simplifies this process.

What Can the TargetLink-PolySpace
Integration Do?
Integration means that TargetLink can be directly con-

nected to the PolySpace Verifier, which uses static

analysis to analyze the generated code with the aid

of what is known as abstract interpretation. This

technique returns information on run-time errors

with a precision that is comparable with a mathe-

matical proof. Individual code fragments are classi-

fied according to whether they will never have any

run-time errors, will always have a run-time error, will

never be executed (dead code), or may sometimes

have a run-time error. Only this last group requires

 Automatic run-time

error analysis of

TargetLink code

 Navigation straight

from analyzed code

to model

 Tool integration

ensures high-

precision analysis

 Code analysis is

configured and run

from model level, using

additional TargetLink-

PolySpace blocks.

 Model fragment containing feedback that may

cause overflow/underflow.

�

�

�
�

���

����������

dSPACE
NEWS

3/2006 * dSPACE GmbH * Technologiepark 25 * D-33100 Paderborn * Germany * info@dspace.de * www.dspace.de

PRODUCTS

closer analysis by developers, as these are the cases

where, due to the abstractions, the PolySpace Verifier

cannot precisely determine whether a run-time error

can really occur or not.

Advantages of the
TargetLink-PolySpace Integration
Users of both tools benefit greatly from the TargetLink-

Polyspace integration in the following ways:

 It takes just a few clicks to run the code analysis

from model level. The configuration parameters

for the PolySpace Verifier, and the TargetLink

subsystem that the code belongs to, are also

specified in the model.

 The PolySpace Viewer uses colors to classify

the operations in the generated code (green =

will never have a run-time error, orange =

may sometimes have a run-time error, etc.).

Users can navigate straight from the code to

the corresponding locations in the model. This

makes it easy to trace the critical points back

to the model, examine them, and if necessary

correct them.

 The precision of the analysis can be greatly

enhanced by additional information at model

level, such as value range limits for calibratable

parameters, and input values. The PolySpace

Verifier reads this information from the dSPACE

Data Dictionary and uses it in the analysis. This

Further information on

the TargetLink-PolySpace

integration (PolySpace

for Model-Based

Design) can be obtained

from PolySpace at

contact@polyspace.com

 The PolySpace Viewer uses colors to indicate potential run-time errors in the code and allows navigation

straight to the model.

Dead code –
Fragment of code that can never be executed.

Compute through overflow –

Calculation method for arithmetic operations

in which overflows are allowed to occur in

intermediate results provided the final result can

be given correctly.

Abstract interpretation –

Method of analyzing the semantics of a program,

using abstractions to reduce the computation

load.

Glossary

reduces the number of code lines whose run-

time behavior cannot be precisely determined.

 PolySpace Verifier explicitly recognizes

TargetLink’s optimized code generation using

the compute-through-overflow technique,

which again makes it easier to analyze the

generated code.

The tool integration produced by PolySpace and

dSPACE not only speeds up the development process,

it also smooths the way to verifying the production

code that is generated.

mailto:contact@polyspace.com

