
dSPACE
NEWS

Surviving a Vehicle
Rollover
Vehicle rollovers are a serious concern in automobile safety and can be fatal. They account
for approximately one quarter of all road accident deaths in the US each year. Delphi‘s
patented WinGAMR rollover detection algorithm detects a rollover and triggers protection.
Delphi used model-based design to implement WinGAMR. TargetLink from dSPACE was used
for automatic production code generation. TargetLink‘s code profi ling techniques helped
to analyze the code and signifi cantly improve the effi ciency of the production code.

Background
Rollovers are complex events. They can have several

causes, such as over correction by a drowsy or dis-

tracted driver. They can also occur when a vehicle

loses positive traction, skids sideways, and encounters

a low obstacle. Vehicle-to-vehicle collisions can also

cause rollovers.

Protecting Vehicle Occupants
With front airbags now covering the driver and

passenger, and with side airbags available on many

vehicles, rollovers are the next big market for crash

safety systems. There are three common ways of pro-

tecting vehicle occupants: removing seat belt slack

(actively tensioning the seat belt) to reduce occupant

ejection; deploying head-rest roll bars for convertibles;

and side window curtain airbags to reduce head injury

and prevent ejection. Post-rollover actions may also be

required, such as cutting off the fuel fl ow and sending

a distress call to the emergency services.

Rollover Detection
Knowing when to trigger such safety measures is

the task of a rollover detection algorithm. Data from

inertial sensors such as gyros and accelerometers

is typically processed in a rollover-sensing module

to make the trigger-or-not decision. The design of

the rollover detection algorithm has to cover a very

wide, dynamic range of events, from a gradual drift

into a highway ditch to a rapid curb trip on a city

© DEKRA

CUSTOMERS

Delphi’s develop-

ments for passen-

ger safety systems

Rollover detection

algorithm imple-

mented and now

in production

 Signifi cant code

improvements

achieved using

TargetLink’s code

profi ling techniques

 In situations like these, the WinGAMR rollover detection algorithm triggers safety measures.

 Simulated sensor signals show the lateral and

vertical accelerations to be analyzed by a rollover

detection algorithm.

1/2005 * dSPACE GmbH * Technologiepark 25 * D-33100 Paderborn * Germany * info@dspace.de * www.dspace.de

dSPACE
NEWS

street. Given the complexity and variety

of rollover events, distinguishing between

trigger and no-trigger events can be a

considerable challenge.

Design
Validating rollover detection algorithms and perform-

ing tolerance studies on their calibration to a specific

vehicle platform are greatly facilitated by math-based

design methods. Once an algorithm has been validat-

ed, it is ready to be autocoded for implementation on

a fixed-point microprocessor. To ensure the reliability

of the final system, it is essential to verify that the

C code accurately represents the same performance

as the math models.

Project and Process
The patented WinGAMR algorithm, invented at

Delphi Electronics & Safety, was first implemented

using Simulink® and Stateflow® models. TargetLink

was then used to develop the range and resolution

for each variable, and to generate code. The fixed-

point target C code was compared with the original

model to clarify the tradeoffs involved in memory and

throughput, and to optimize the system. Comparing

target C code (PIL simulation) to the original validation

file (MIL simulation) then verified the performance of

the final product.

Profiling and Optimization
Using the execution time metric produced with

TargetLink and a target processor evaluation board,

a sub-optimal implementation of the algorithm was

identified. Within minutes, the cause of the high

RAM and throughput was evident. By making a very

modest change in the algorithm implementation,

both RAM and throughput were reduced by 75%.

This remarkable improvement may not have been

noticed for weeks or months using the traditional

approach. Bringing the consequences of algorithm

implementations to the awareness of the algorithm

designer enabled quick cycles of learning that led to

rapid improvement in performance. Besides speed-

ing up the time to market, the wasteful expenditure

of a considerable amount of engineering effort was

entirely avoided.

CUSTOMERS

������� ����������������

���

����������
���

���

���

���

���

���

���

���

�

 TargetLink was used to generate efficient fixed-

point C code from Simulink and Stateflow models.

 Insights into the algorithm gained from using

TargetLink’s code analysis tools and an evaluation

board led to huge improvements in RAM

consumption and throughput (execution time).

1/2005 * dSPACE GmbH * Technologiepark 25 * D-33100 Paderborn * Germany * info@dspace.de * www.dspace.de

dSPACE
NEWS

Implementation
The auto-generated code was passed to the software

integration engineer. Integration took less than 2 days.

His comments were: “The generated code was easy to

understand. Every comment and variable name was a

real help, and in my opinion it saved a lot of time. It is

a good base for developing target C code. The main

backbone of code was almost unchanged.” The word

“almost” is a reference to a digital high-pass filter

that used 16-bit variables. The software integration

engineer expanded these to 32-bit variables, which

improved accuracy in the final results.

Handcode vs. Autocode
The autocoded algorithm was a new development;

so direct comparisons with handcode are not avail-

able. However, an earlier handcoded version of the

rollover detection algorithm consumed more through-

put, more RAM, and more ROM than the autocoded

algorithm. The autocoded algorithm also improved

field performance. This comparison involves other

factors, but it can be stated that autocode did not

cause any undesirable metrics in the newly-created

rollover detection algorithm.

Live Testing
Live testing of the algorithm was performed to com-

pare results to predictions. Three tests were run.

The two near-rollover tests were successful, and did

not trigger. The measured deployment time for the

rollover test matched the simulation exactly (10 ms

sampling rate). Moreover, a professional racing driver

was unable to produce any undesirable behavior on

a rigorous test course. The results were a success and

this algorithm is now in production.

Future Outlook
Further development of rollover detection algorithms

continues to use MATLAB/Simulink/Stateflow for

development and calibration, and TargetLink for auto-

matic production code generation. The re-use blocks

from WinGAMR allow the next generation of rollover

detection algorithms to be developed much more

rapidly and efficiently.

Peter J. Schubert, PhD

Technical Fellow

Systems Methodology Advocate

Delphi Electronics & Safety

USA

Essence

CUSTOMERS

����������������������

���������� ������

���

���

���

���

���

���

���

���

��

�

Autocode Success Story
 Code-profiling led to handcode efficiency;

 RAM and throughput down by 75%

 Integrated in 1.5 days

 In production

 Statements from software engineers:

 “The generated code was easy to understand.

Every comment and variable name was

 a great help.”

 “In my opinion it saved a lot of time. It is

a good base for developing target C code.

The main backbone of code was almost

unchanged.”

Equipment and Methods
 TargetLink, Target Optimization Module and

 Motorola HC12 Evaluation Board for code

profiling

 – Throughput (execution time)

 – RAM (including stack)

 – ROM

 Back-to-back-tests

(MIL, SIL and PIL simulations) at earliest stage

Autocode Reduces Risks
 No transcription errors

 No misinterpretation of specifications

 Match with model performance

 The deployment time measured for the autocoded

algorithm matched the simulation.

1/2005 * dSPACE GmbH * Technologiepark 25 * D-33100 Paderborn * Germany * info@dspace.de * www.dspace.de

