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Abstract
This paper gives an overview of the FMI 3.0 support
for two kinds of clock-based simulations: Synchron-
ous Clocked Simulation, and Scheduled Execution. The
former is used when the information about multiple simul-
taneous events (cause and exact time of occurrence) can be
unambiguously conveyed. The later facilitates real-time
simulations comprising multiple black-box models, by al-
lowing fine grained control over the computation time of
sub-models. A formalization is presented along with ex-
ample application scenarios, meant as an introduction to
the conceptualization of clocks in the FMI Standard.
Keywords: functional mockup interface, synchronous
clocks, reactive systems, real-time simulation, scheduling,
real-time operating system.

1 Introduction
As more and more Modeling and Simulation (M&S) tools
are used in system engineering processes, it becomes clear
that standards are needed to improve the interoperability
of such tools. The Functional Mockup Interface (FMI)
Standard (2.0 2014) aims at enabling the exchange and
cooperative simulation of black-box models. Version 2.0
of the standard strikes a balance between supporting the
most common features across the plethora of M&S tools,
and enabling the advanced simulation scenarios. Its wide
adoption has, however, placed pressure in supporting two
important use cases are: simulation scenarios where timed
and state events play a frequent role in synchronizing a
subset of the participating models (e.g., controller code
with tasks running at different rates); and scenarios where
the goal is to control the computation time of the different
models, so that a real-time co-simulation can be achieved.

Contribution. This paper gives an overview of the FMI
3.0 support for two kinds of clock based simulations: Syn-
chronous Clocked Simulation (SC), and Scheduled Execu-
tion (SE). The former aims at scenarios where the cause
and exact time of occurrence of multiple simultaneous
events can be unambiguously conveyed. The later facil-
itates real-time simulation among black-box models, by
allowing a finer grained control (compared to version 2.0)
over when/which model partitions can be executed.

Structure. The next section will introduce the common
concepts and the interface elements that are common to
SC and SE. Then in Section 3 SC is detailed, along with
a motivating example. Section 4 focuses on SE, following
the same structure as Section 3. In Section 5, we discuss
some of the relevant related works, and in Section 6 we
summarize and conclude.

2 Common Interface and Concepts
Co-simulation is a technique to combine multiple black-
box simulation units to compute the combined models’
behaviour. See Kübler and Schiehlen (2000) and Gomes
et al. (2018), for an introduction. The simulation units,
often developed and exported independently from each
other in different M&S tools, are coupled using an or-
chestration algorithm, often developed independently as
well, that communicates with each simulation unit via its
interface. This interface, an example of which is the FMI
Standard interface for Co-Simulation, comprises functions
for setting/getting inputs/outputs and computing the asso-
ciated model behaviour over a given time interval.

The FMI 3.0 defines three interface types: the Co-
Simulation (CS), the Model Exchange (ME), and the
Scheduled Execution (SE). In the FMI, a simulation unit is
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called a Functional Mockup Unit (FMU), and it may im-
plement one or more of the three interfaces. An FMU is a
zip containing: binaries and/or source code implementing
the API functions; miscellaneous resources; and an XML
file, describing the variables, model structure, and other
data.

For each interface type, the FMU may implement op-
tional features, such as declaring synchronous clocks (in
case of ME or CS), or scheduled execution clocks (in case
of SE). Figure 1 summarizes the different interface types
and the main concepts relevant to this paper. All three in-
terfaces (CS, ME, and SE) share common functionality,
such as the declaration and usage of variables and clocks.

The differences between the three interface types can
be seen on the left hand side of Figure 1. The Importer
refers to the software that imports the FMU. We distin-
guish three importers, each corresponding to one of the in-
terface types, and each with different responsibilities. The
ME importer often needs to provide a differential equa-
tion (ODE) solver, and must handle events. In contrast,
the CS importer does not need to provide an ODE solver,
because such a solver can be implemented inside the CS
FMU. Finally, the SE importer needs a task scheduler that
will determine exactly when each task implemented in the
FMU will be executed.

The ME and CS both contain mechanisms to commu-
nicate events to the importer, and, as we detail later, both
enable Synchronous Clocked (SC) simulation.

Broadly, a simulation involving multiple connected
FMUs goes through the following modes1:
Initialize – The FMUs are instantiated and their initial

state/inputs/outputs/parameters are calculated or set
by the importer.

Step – The simulation is progressing in simulated time,
and FMUs that represent ODEs are being numeric-
ally integrated.

Event – The simulated time is stopped and events (e.g.
clock ticks, parameter changes) are being processed.

Terminate – The simulation has finished and all re-
sources are freed.

The Step and Event modes come after the Initialize mode,
and are interleaved.

In the following sub-sections, we introduce FMI3.0
clocks, how they are declared, connected, and interacted
with, as well as common constraints imposed by the stand-
ard. These are common to the SC and SE clock interpret-
ations.

2.1 Clock Taxonomy
Clocks represent an abstraction of activities whose occur-
rence is tied to specific points in time. They appear in
many modeling formalisms for systems that interact with
the real world (Benveniste et al. 2003; Modelica Associ-
ation 2021), where it is important to represent computa-

1This is a simplification of the states or modes defined in the state
diagrams of the FMI 3.0 standard.

tions that happen at different rates, or as a result of con-
ditions observed in the environment. Conceptually, each
clock represents a sequence of instants in time where the
clock is active, called ticks. From the entities that can in-
teract with a clock, we highlight the FMU and the importer
(recall Figure 1). The FMU is the entity that declares the
clock, while the importer is the code activating the clock
in the FMU.

Clocks are declared in the XML file, and can be seen
as a special kind of variable. The XML description for
each clock contains, among others, an identifier called the
value reference, a causality attribute (whether the clock is
an input or output, as we will discuss later), and an interval
attribute (declaring the type of clock, discussed later). Dy-
namically, during the simulation, each clock can be either
active or inactive (denoted as the clock’s state), and its
state can be either set or get by the importer, depending on
the clock type and its causality (see below).

There are two main types of clocks: time-based and
triggered. Time-based clocks are associated with an inter-
val, dictating, at any moment in simulated time, the inter-
val (in simulated time units) between the last tick and the
next tick. Such intervals can be queried or set by the im-
porter, depending on the clock’s interval attribute (see be-
low). In contrast, triggered clocks have no a priori known
interval. The FMU or importer has to set/get the (activa-
tion) state of the clock. The different clock types are listed
in Table 1 according to who calculates the intervals and
ticks the clock.

Before discussing the causality of clocks, it is important
to distinguish between the entity that dictates the clock in-
terval vs. the entity that actually activates the clock. This
distinction is important in the context of the FMI because
the simulated time is a real-valued quantity, represented
by a finite-resolution variable. For example, the FMU may
declare the interval of a periodic clock in the XML, but it
is the importer that will decide exactly at which simulated
time the clock ticks. Due to numerical inaccuracies, it may
happen that the interval (in simulated time) between clock
ticks does not match exactly the interval declared by the
FMU.

Time-based clocks are always input clocks, since it is
always the importer that is responsible for activating the
clock (even though the clock interval information may
come from other entities, as shown in Table 1). Triggered
clocks, on the other hand, can be input or output clocks.
Triggered input clocks, just like time-based input clocks,
can only be set by the importer, whereas triggered out-
put clocks are set internally by the FMU, and can only be
queried by the importer. The causality therefore plays a
role in determining how clocks can be connected.

2.2 Clock Variables and Dependencies
Just like any other variable, an output clock can be con-
nected to an input clock. It is also possible to connect
two input clocks or even have one input clock connected
to two different output clocks. A connection from clock
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package Synchronous Clocks interfacesME FMU

ME Importer

interface Model Exchange
ME Exporter

exports

interacts with

package Common Features

Variables

Clocks

<<refine>>

<<refine>>

interface Co-simulation

interface Scheduled Execution

<<refine>>CS FMU

CS Exporter

exports

ODE Solver Event Handler

<<import>>

Algebraic Eq.
Solver

CS Importer <<import>>

interacts with

Event HandlerAlgebraic Eq.
Solver

<<refine>>

<<refine>>

<<refine>>

<<refine>>

SE FMU

SE Exporter

exports

SE Importer <<import>>

interacts with

Task Scheduler

External FMI Standard

Events

ODE

Figure 1. Overview of relevant concepts. Note that there might be domain specific importers which do not need an ODE solver
because the supported FMUs do not contain continuous variables. This figure attempts to illustrate the most common differences
between the interface types.

wc to clock vc means that whenever clock wc ticks, then
clock vc should also tick. For triggered clocks, that is rel-
atively easy to enforce: whenever one clock activates, the
other should be activated. For time-based clocks, the im-
porter must take into account the interval attributes of the
clocks and decide whether such connection makes sense
or not. For example, if one clock has a constant interval,
and another clock has a fixed interval, then the importer
may simply set the correct period for the second clock.

FMUs can declare the internal dependencies between
their output and their input variables in the XML section
denoted as Model Structure. An output variable y depends
on an input variable u when the computation of y’s value
requires the value of u. For example, in Figure 2, ym is
computed from, among other dependencies, um.

Each output clock yc can also depend on one or more
input clocks or variables. The meaning is that the state
of such input clocks or the value of the input variables
is taken into account when deciding whether yc will tick.
For example, in Figure 2, yc

m may tick when uc
m ticks, or

because of the value change of um. Note that it is not ne-
cessarily the case that yc will tick whenever an input clock,
that yc depends on, ticks.

When a clock wc ticks (we use wc when the causality
of the clock is irrelevant), there is a set of variables whose
values are computed. We denote that set by “wc’s vari-
ables”, or “clocked variables” when the specific clock is
unimportant. FMI imposes few constraints on the clocked
variables. However, the FMU can declare in its XML, for

each variable, which clocks wc depends on (usually one).
For example, in Figure 2, ym is computed when uc

m ticks.
Lacking such declaration, the importer needs to assume
the worst case: all output variables are computed when wc

ticks. The value of wc’s variables should only be accessed
when (one of the) wc is active, i.e., is ticking. Accessing
the wc’s variables when wc is not ticking results in un-
defined behaviour.

m n

Legend:

 is computed from  when  ticks.

 may tick because of  ticking
or  changing value.

 is transitively connected to .

Figure 2. Example clock connections and dependencies. The
symbols m and n refer to FMUs.

3 Synchronous Clocked Simulation
In this section, we describe the Synchronous Clock (SC)
interpretation of the clocks interface, introduced in the
previous section. This interpretation is inspired by the
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Table 1. Overview of clock types and their attributes.

Clock Type Period Interval Interpretation

time-based
periodic

constant FMU declares period in XML.
fixed Importer sets the interval during Initialize.
calculated FMU calculates period in Initialize mode.
tunable FMU calculates period in Event mode (CS) or after executing model parti-

tion (SE).

aperiodic changing FMU calculates interval after each clock tick.
countdown FMU calculates interval after an event.

triggered – triggered There’s no known interval. The clock ticks unpredictably, either due to
FMU current state/inputs, or due to events.

clock implementation in the Modelica specification (Mod-
elica Association 2021) and existing synchronous clock
theories such as Benveniste et al. (2003), but had to be ad-
apted to reflect the constraints of black-box co-simulation.
As such, we offer no guarantees of semantic equivalence.

We start with detailing the main simulation modes for
both ME and CS FMUs, as if no clocks were declared. In
order to focus on the essential mechanisms, we abstract
away from the ME and CS interfaces, and present them
in a unified manner using set theoretic constructs, while
referring the reader to the standard for more details.

3.1 Background on CS and ME
Following the super-dense time formulation as in Lee and
Zheng (2005), the simulation time is a tuple t = (tR, tI)
where tR ∈ R≥0, tI ∈ N≥0. In Step mode, the real part of
time tR is increasing and tI = 0, and during Event mode,
the integer part of time tI is increasing while tR is held
constant. Figure 3 illustrates a possible trajectory for the
values of a variable v under super-dense time. As can be
seen, the Step mode produces a continuous evolution for
the value of v, while the Event mode introduces discon-
tinuities in the calculation of v. Under Event mode, a vari-
able may acquire multiple values, each computed by one
iteration of the Event mode, discerned by the tI part of the
timestamp.

3

(3,0)

(3,1)

(3,2)

(3,3)

(2,0)

Step Mode Step Mode

Event Mode

Figure 3. Example variable trajectory under super-dense time.

In Step mode, the FMU and importer cooperate in ap-
proximating the solution of a system of differential equa-

tions, described by the FMU. In the case of ME, the FMU
provides the derivatives and the importer provides the in-
puts and solver, whereas in CS, the importer provides the
inputs, and the FMU provides the derivatives and solver
(recall Figure 1).

The importer may then switch the FMU to Event mode
if one or more of the following situations occur2:

Time events – the simulated time t = (tR,0) reached a
value tR that was known at the end of the last Event
mode;

State events – The value of some variable crossed a
threshold that is known to the FMU;

Input events – The value of an input variable changed in
a discrete way, introducing a discontinuity.

In version 3 of the FMI Standard, both ME and CS in-
terfaces describe the mechanism by which the FMU com-
municates the occurrence of events to the importer, so we
will not discuss these mechanisms here. It suffices to as-
sert that the importer is able to determine that the FMU
should switch to Event mode at the appropriate simulated
time.

During Event mode, the FMU and importer cooperate
in solving a set of algebraic equations that are associated
with the event that triggered the Event mode, known to the
FMU. To solve the equations, the importer will typically
construct a dependency graph between the output and in-
put variables, using the Model Structure declared by the
FMU. Note that the FMU may be part of a larger sim-
ulation model, where external variables form its inputs,
and can also depend on its outputs. Therefore the depend-
ency graph may involve not just the FMU variables, but
other relevant external variables. As a result, there might
exist cyclic dependencies between variables of the FMU.
These manifest in the form of non-trivial strongly connec-
ted components in the dependency graph (Tarjan 1971). It
is up to the importer to solve the algebraic loop, by setting
and querying the variables of the FMU. The FMU plays its
role by recomputing any output variable that might change

2There are other kinds of events, but for simplicity we highlight the
main ones.
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as a result of new values for the input variables set by the
importer. The important outcome is that all variables of
the FMU have acquired a value.

The FMU may remain in Event mode, and perform a
new iteration, if more events occur. These new events may
be caused by the importer or by a new value for some vari-
able. The FMI defines the mechanism by which the FMU
or importer agree that a new event iteration is needed.
Each new event iteration corresponds to one increment in
the integer part of the simulated time. If no more event
iterations are needed, Event mode is finished.

Note that, in Event mode, as part of the procedure to
solve non-linear equations, there may be hundreds of iter-
ations to converge and obtain a solution. These interme-
diate values are not shown in Figure 3 and do not cause
the integer part of super-dense time to increment because
they happen within one super-dense time instant. There-
fore in Figure 3 there are three event handling iterations.
When switching back to Step mode, the FMU also informs
the importer of the next time-based event (if such event is
defined).

3.2 Discerning Events
The basic event signaling mechanism offered by FMI 2.0
is adequate for most applications that do not rely on many
events. However, they are insufficiently expressive for
simulations with many simultaneous events. We illustrate
this with a simple example shown in Figure 4, devised
to motivate the need for clocks. The example shows a
closed loop control system, where the CtrlFMU is spe-
cified as an FMU, and the remaining sub-models are spe-
cified in some other language. We sketch the CtrlFMU
equations, but note that the importer has no access to these
(it can only query the FMU for the values of the output
variables). The CtrlFMU, every 1/r seconds (we ab-
use the notation r to denote both a clock r and its fre-
quency), gets a sample from the Plant (produced by
the Sensor), and calculates its next state, based on the
previous state pre(u_r), the sampled value x_r, and
some configuration parameter a that is calculated by the
Supervisor. The latter, depending on the Plant dy-
namics, the sampling rate of which we ignore, may decide
to reconfigure the Controller.

Using only the basic event mechanism of FMI, it is
cumbersome to simulate Figure 4, for the following reas-
ons:

• If it is the FMU that decides when to sample, there
is no way for the importer to know the sample rate
r. The importer only receives information about
the next time event, after each Event mode of the
CtrlFMU.

• There is no way for the FMU to know exactly which
equations to enable when entering Event mode.
When the Supervisor computes a new value for
a_s, the CtrlFMU must be in Event mode, because
of the input event. Then CtrlFMU must rely on ap-
proximate floating point comparisons to know that

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s

Figure 4. Motivating example with supervisor controller.

only the Config equation is to be enabled. Con-
versely, when a new sample x_r is available, the
CtrlFMU must know that the Config equation
must remain disabled.

Figure 5 shows how clocks address the limitations high-
lighted by the example in Figure 4. By introducing a
triggered input clock s and a time-based input clock r,
it is made clear who is responsible for the unambiguous
activation of the clocks: the Supervisor controls s,
and the importer controls r. Furthermore, no approxim-
ate floating point comparisons are needed to know which
equations have to be active when entering Event mode.

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s clock s

clock r

Figure 5. Clocked version of Figure 4.

3.3 Synchronous Clocks Semantics

We now detail the main functions that interact with clocks.
In order to do so, we must define a compact FMU abstrac-
tion. Without loss of generality, we can focus on form-
alizing what happens in a simulation where the FMU is
in Step mode, switches to Event mode, and then resumes
Step mode.

Definition 1 (SC FMU Instance). An SC FMU instance
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with identifier m is represented by the tuple

⟨Sm,Um,Ym,Uc
m,Y

c
m,setm,getm,

setc
m,get

c
m,commit

c
m,stepTm,stepEm,nextTm⟩

where:
• Sm represents the abstract set of possible FMU states.

A given state sm ∈ Sm of m represents the complete
internal state of m: active clocks, active equations,
current mode (Step or Event mode) current valu-
ations for input and output variables, etc.

• Um and Ym represent the set of input and output vari-
ables, respectively.

• Uc
m and Y c

m represent the set of input and output
clocks, respectively.

• setm : Sm ×Um ×V → Sm and getm : Sm ×Ym →
Sm × V are functions to set the inputs and get the
outputs, respectively (we abstract the set of values
that each input/output variable can take as V ). Both
setm and getm return a new state because both can
trigger the computation of equations.

• setc
m : Sm ×Uc

m ×B → Sm and getc
m : Sm ×Y c

m →
Sm × B are the functions that (de-)activate the in-
put clocks and query the output clocks (returning
the activation status), respectively, and B denotes the
boolean set.

• commitc
m : Sm ×W c

m → Sm is a function that updates
the clocked states of a given input/output clock in
the set W c

m = Uc
m ∪Y c

m. Clocked states are clocked
variables whose value depends on the previous value
(e.g., u_r in Figure 4).

• stepTm : Sm ×R≥0 → Sm ×R≥0 ×B is a function
representing the Step mode computation. If m is
in state sm at simulated time (tR, tI), (sm

′,h,b) =
stepTm(sm,H) approximates the state sm

′ of m at
time (tR + h,0), with h ≤ H. When b = true, we
know that the importer and m have agreed to inter-
rupt the Step mode prematurely, and m is ready to go
into Event mode.

• stepEm : Sm → Sm ×B represents one super-dense
time iteration of the Event mode. If m is in state sm
at time (tR, tI), then (sm

′,b) = stepEm(sm) repres-
ents the computation of m’s internal super-dense step
transition, where sm

′ represents the state at (tR, tI +1)
and b informs the importer whether one more Event
iteration is needed.

• nextTm : Sm ×Uc
m → R≥0 ∪{NaN} is the function

that allows the importer to query the time of the next
clock tick. This function is only applicable to tun-
able, changing, and countdown clocks, and the re-
turned value is calculated according to the clock type
as discussed in Table 1. The value NaN can be re-
turned for countdown clocks, and it means that the
clock currently has no schedule.

The major differences between above formalization and
the FMI interface are as follows.

• There is no explicit representation of state. Most
FMI functions take an FMU instance as an argument,
and the manipulations to the instance are performed
implicitly. We choose to make state explicit so as to
explicitly convey which functions change the state of
the instance.

• The FMI describes the callback function by which, in
CS, the FMU and importer may decide when to pre-
maturely terminate the invocation to stepTm. For
ME, the importer is responsible for implementing
stepTm (recall Figure 1).

We now discuss informally the semantics of each func-
tion implemented in an FMU instance m, with a focus on
the clock functions. Since clock operations happen only
in Event mode, we will focus on that mode. Moreover, we
present the semantics in the order that a generic importer
would interact with the FMI instance m.

Entering Event Mode. Clocks can only tick in Event
mode. During Step mode, the FMI provides mechanisms
for the FMU and importer to agree that there’s a clock
that needs to tick, and will therefore switch the FMU to
Event mode at the appropriate time. Such mechanisms
are represented by (sm

′,h,b) = stepTm(sm,H), when b =
true. In this case, sm

′ represents the state of the FMU ready
to begin the Event mode, at super-dense time (tR + h,0),
where tR is the real part of the time of sm. As discussed in
Section 3.1, the causes of b = true can be many.

Ticking Clocks. In Event mode, m in state sm ∈ Sm
may activate any triggered output clock yc

m ∈ Y c
m, a fact

that can be communicated to the importer via the function
call getc

m(sm,yc
m). Conversely, any input clock uc

m ∈ Uc
m

that needs to be ticked (according to the interval inform-
ation), is activated by the importer, through the function
call setc

m(sm,uc
m, true).

Enabling/Disabling Clock Equations. Let sm ∈ Sm de-
note the state of m right after a clock wc

m (input or out-
put) has been activated, and let (tR, tI) represent the current
super-dense time. When wc

m is activated, there is a set of
equations, associated to wc

m, that becomes active (are en-
abled) for the current super-dense time instant (tR, tI). The
set of output variables whose value is computed by wc

m’s
equations is denoted as “wc

m’s variables”. While wc
m is

active, invocations to getm on wc
m’s variables will trigger

their computation according to wc
m’s equations. However,

the values that wc
m’s variables acquire while wc

m is active
are only made permanent when commitc

m is invoked. If
setc

m is invoked to de-activate an active clock wc
m at time

(tR, tI) (before commitc
m is invoked), then m should en-

sure that wc
m’s variables return to the values they had im-

mediately before wc
m became active (this is not a strict re-

quirement, since those variables should not be consulted
once wc

m became inactive). When stepEm is invoked, wc
m

becomes inactive along with its equations, and the super-
dense time instant becomes (tR, tI + 1). If stepEm is in-
voked before commitc

m is invoked, then commitc
m is in-

voked by m.

The FMI 3.0 Standard Interface for Clocked and Scheduled Simulations

32 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118127



Propagating Clock Activations. In Event mode, if a
clock wc

m is (in-)active at super-dense time (tR, tI), then
the importer must ensure that all other clocks that are
connected to wc

m must also be (in-)active for time (tR, tI).
Triggered output clocks may activate during a super-dense
time instant, or after a call to stepEm. Therefore, the im-
porter must query triggered output clocks to monitor ac-
tivations. FMI allows declaring the variables in the XML
file that may influence a triggered output clock (recall Fig-
ure 2). It is outside the scope of FMI to ensure that a sim-
ulation scenario is well defined (e.g., it does not result in
an infinite number of (de-)activations).

Scheduling Time-Based Clocks. In Event mode, after
a call to stepEm, at super-dense time (tR, tI), m must be
able to inform the importer of the time of the next tick of
each clock uc

m ∈ Uc
m that is tunable, changing, or count-

down. This is done through function nextTm, when uc
m

satisfies one of the following conditions: 1. uc
m is a count-

down clock; or 2. uc
m is not a countdown clock, and uc

m was
active in the super-dense time that was just concluded, at
time (tR, tI −1). The Importer should use this information
to schedule the next Event mode. If nextTm returns 0,
then the importer must do a new event iteration.

Generic Clocked Simulation Algorithm. The follow-
ing summarizes the Event Mode algorithm that coordin-
ates the simulation with multiple FMU instances, with
connected inputs/outputs and clocks. Let M denote the
set of FMU instances participating in the simulation. We
assume that one FMU instance m ∈ M or the importer has
requested to enter Event mode. Therefore we assume that
every other instance m′ ∈ M∧m′ ̸= m has been stepped up
to the same super-dense time (tR,0). In the following, we
use _ to denote an non-important argument.

1. Every m ∈ M enters Event mode (super-dense time instant
is tI = 0);

2. Activate any time-based clocks scheduled to tick at (tR,0),
by invoking setc

m′(_,wc
m′) for any input/output clock wc

m′ ∈
W c

m′ and any instance m′ ∈ M;
3. Construct and solve system of equations for tI :

(a) For all yc
m ∈ Y c

m of any instance m ∈ M, forward ac-
tivation state of triggered clocks:

i. Invoke getc
m(_,y

c
m), and setc

m′(_,uc
m′) or

getc
m′(_,yc

m′), for any other clock uc
m′ ∈Uc

m′ or
yc

m′ ∈ Y c
m′ and instance m′ ∈ M that is transit-

ively connected to yc
m or has become active as

a result of the clock activations;
ii. Invoke commitc

_(_,w
c) for any active in-

put/output clock wc whose input variables have
been set.

(b) Invoke getm′(_,ym′) and setm′(_,um′ ,_) in the ap-
propriate order, for any instance m′ ∈ M.

4. Invoke stepEm(_) for m ∈ M (signals end of Event itera-
tion tI).

5. Schedule clocks by invoking nextTm on every relevant
clock, for m ∈ M.

6. If any m ∈ M wishes to repeat the event iteration, or if a
clock returned a zero interval, go to Step 3 (start iteration
tI +1).

The goal of Step 3 is to solve the system of equations
that became active due to the clock activations. There are
no guarantees that such a system has a solution, or that the
clock activations will stabilize. It is up to the Importer to
determine this, so we leave it intentionally unspecified.

4 Scheduled Execution
SE and SC have the following in common: they use the
same clock types, as introduced in Section 2; directly con-
nected clocks (e.g., yc

m and uc
n in Figure 2) will tick at the

same simulated times (although the corresponding equa-
tions will be executed at different wall-clock times, see
below); after a clock tick, there may be more clock ticks,
either at the same time, or at some time in the future. How-
ever, there are differences, detailed later:

• Each SE clock w, when activated at simulated time
tR ∈R≥0, represents a task that needs to be executed.
In contrast, in SC, w merely enables a set of equa-
tions that are subsequently solved.

• In SE, there is a clear distinction between the wall-
clock time, and the simulated time. For example, two
clocks may tick at the same simulated time tR ∈ R≥0
(because they are connected, or because they have
the same period), but their corresponding tasks will
execute at different wall-clock times. However, the
two tasks will be computed with simulated time tR.

• In SE, the execution of a task can be pre-empted by
a higher priority task. This has the important con-
sequence that the FMU must inform the importer of
when a task should not be pre-empted.

The main goal of SE is to facilitate real-time simulation.

4.1 Motivating Example
Figure 6 shows an abstract example, where an FMU de-
clares three input clocks and one output clock. Each input
clock, when ticked, instructs the importer, who acts as a
task scheduler (recall Figure 1), to execute the correspond-
ing model partition (defined next) as soon as possible.

A model partition, or just partition, represents code
that should be executed as soon as (in real time) an input
clock ticks. Partitions contain arbitrary code that reads
the inputs of the FMU, writes to the FMU’s local vari-
ables (which can be shared among tasks) and outputs, and
can trigger other clocks or update their interval. The in-
puts to each partition are set by the importer immediately
before executing that partition, as part of the task corres-
ponding to that partition. In Figure 6, uc

m’s partition reads
and writes the shared variable xm, and either updates the
interval of vc

m or ticks yc
m.

We stress the distinction between model partition and
a task: the former represents code that is executed within
the context of the later. So a task T contains code that
sets the inputs of the FMU, invokes the model partition P,
and reads the outputs. Such a task will simply be denoted
as “P’s task”. For example, in Figure 6, when execution
Partition 1’s task, the importer sets the values for input um
before executing Partition 1.
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In SE, there is a need for a function that the importer in-
vokes, to tell the FMU to execute a partition. Note the dif-
ference between the partition activation function (defined
later) and the clock set/get functions: the later inform the
importer that a task should be scheduled, while the former
executes as part of the previously scheduled task.

In Figure 6, input clock uc
m ticks every 10ms and wc

m
ticks every 50ms, so every so often, the two clocks will
tick simultaneously. When that happens, the scheduler
needs to know whose task has the highest priority. As a
result, the FMU needs to declare a priority level for each
input clock. In Figure 6, uc

m’s task (the one executing Par-
tition 1) should be executed before wc

m’s (Partition 3).

m

when :
  
  
  if (...) then
    setInterval( )
  else
    tick( )
  ...

Clock attributes:
 - Period 10ms,  Priority 1
  - Countdown,   Priority 2
 - Period 50ms, Priority 3
  - Triggered,      Priority --

Partition 1

Task 1when :
  

when :
  

Local vars: 

Partition 2

Partition 3

Figure 6. Motivating example, where an FMU declares three
input clocks and one output clock.

Output clocks, in SE, are never directly associated to
a partition of the FMU where they are declared. Instead,
these can be connected to input clocks (including the ones
of the owning FMU).

Because tasks can be pre-empted, certain operations,
such as updating a shared variable, must be atomic (see
example below). As such, the FMU must inform the im-
porter of when it should not be interrupted, to prevent
mixed resource access that would create inconsistent val-
ues.

Since partitions can trigger and update the interval of
other clocks, there must be a mechanism for the FMU, in
the middle of the calculation of a partition, to inform the
importer that a clock has ticked or has a new interval, so
that the importer can schedule the corresponding tasks.

Figure 7 illustrates a possible execution trace of the
tasks corresponding to the partitions declared in Figure 6.
At the initial wall-clock time, both task 1 and 3 are sched-
uled to execute. Since Task 1 has higher priority, it runs
first, and Task 3 is delayed. While executing Task 1, the
FMU informs the importer that vc

m’s task (Task 2) should
be scheduled to run at wall-clock time t2. At wall-clock

time t2, Task 1 is still executing, so Task 2 is delayed until
wall clock time t3. At t3, Task 2 starts executing, but note
that the activation time of Task 2 is still its scheduled time
t2. This is where the wall-clock time t3 differs from the
simulated time t2 . At t4, Task 2 is pre-empted, because
of Task 1. Finally, after being delayed substantially, Task
3 gets to execute, with its simulated time t0 .

Wall-clock time (ms)

activate( , )

Ta
sk

 2

setInterval( , )

schedule Task 2 delay

delayed

suspend

activate( , )
activate( , ) activate( , )

Ta
sk

 3
Ta

sk
 1

Legend:
 - Wall-clock time
 - Simulated time

Figure 7. Example execution trace of Figure 6.

4.2 Scheduled Execution Semantics
The following formalization is a simplification meant to
highlight the main functions defined in the FMI Standard.
The main concepts being formalized are tasks, clocks, and
activation of model partitions.

Definition 2 (SE FMU Instance). An SE FMU instance
with identifier m is represented by the tuple

⟨Sm,Um,Ym,Uc
m,Y

c
m,

setm,getm,get
c
m,activatem,nextTm⟩

where:
• Sm, Um, Ym, Uc

m, and Y c
m, are defined as in Defini-

tion 1.
• setm : Sm ×Um ×V → Sm and getm : Sm ×Ym → V

are functions to set the inputs and get the outputs,
respectively. In contrast with the SC FMU in Defini-
tion 1, getm does not alter m’s state because any non-
trivial computation of outputs should be done in the
partitions associated with the input clocks, executed
through the invocation of the activatem function.

• getc
m : Sm ×Y c

m → Sm ×B queries the output clocks.
Note that, in contrast to SC, getc

m(_,y
c
m) changes the

state of m, because it automatically de-activates yc
m

(the justification is provided below).
• activatem : Sm × Uc

m × R≥0 → Sm is a func-
tion representing the computation of a partition.
If m is in state sm at wall-clock time ti, sm

′ =
activatem(sm,uc

m, ti) represents three successive
steps: the activation of clock uc

m, the computation of
the partition associated to clock uc

m, and de-activation
of clock uc

m. In state sm
′, clock uc

m will be inactive.
• nextTm : Sm ×Uc

m → R≥0 ∪{NaN} is the function
that allows the importer to query the time of the next
clock tick. It is defined as in Definition 1.
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In addition, we will use the notation task(uc
m), for uc

m ∈
Uc

m, to denote the task that will execute uc
m’s partition.

Scheduling Tasks. In SE, the importer operates as a
scheduler of tasks that will activate the model partitions.
As summarized in Table 1, clocks can be ticked by the
FMU or importer, but we will focus on input clocks,
since these are the ones that can be associated to a parti-
tion (when an output clock ticks, the importer is respons-
ible for ticking all connected input clocks and therefore
scheduling the corresponding tasks). Right after invoking
(sm

′, true) = getc
m(_,y

c
m) on an output clock yc

m that is act-
ive, the clock yc

m should be inactive in state sm
′.

An input clock uc
m may tick, and its period may be

updated, in the middle of an activatem computation.
Because task(uc

m) may be of high priority, the importer
must not wait until the end of activatem to schedule
task(uc

m). As such, the importer implements a function
updatem : Sm → Sm defined by the FMI, that the FMU can
invoke (in the FMI Standard, this is implemented as a call-
back mechanism). The importer, inside updatem, may
consult the status of clocks and their intervals (through
getc

m and nextTm functions), and schedule the corres-
ponding tasks accordingly.

The time at which the importer schedules task(uc
m) is

computed according to: uc
m’s declared interval; function

nextTm; or through the getc
m′(_,yc

m′) function of some
other clock yc

m′ and FMU instance m′. In the last case,
task(uc

m) is scheduled to execute as soon as possible, ac-
cording to the priorities known to the importer.

Executing Tasks. A task task(uc
m) that is scheduled

to time ti, due to the priorities chosen and consequent
delays incurred, may only execute at a later wall-clock
time t j > ti. When task(uc

m) is executed, it should set
the relevant inputs through function setm (the importer
knows the relevant inputs through the XML of m), ac-
tivate the partition trough function activatem(_,uc

m, ti),
and possibly read the calculated outputs, through getm.

Safeguarding Pre-emption. Unless otherwise stated by
the FMU or importer, a task can be pre-empted at any mo-
ment. In order to allow the FMU to inform its environment
that the currently executing task should not be pre-empted,
the FMI defines two functions: lockP and unlockP that
the FMU and importer can invoke, and are implemented
by the importer. lockP informs the environment that a
task cannot be pre-empted until unlockP is invoked.

Generic Scheduled Execution Algorithm. Let M de-
note a set of FMU instances, assumed to be initialized.

1. Schedule task(uc
m), for all uc

m ∈ Uc
m and all m ∈ M,

if interval of uc
m is constant fixed, or calculated;

2. When updatem(_) is invoked, do:
(a) Lock pre-emption with lockP;
(b) If (_, true) = getc

m(_,y
c
m), schedule task(uc

m′)
for any clock uc

m′ that is transitively connected
to yc

m.
(c) Unlock pre-emption with unlockP;

3. Each task task(uc
m) is implemented as:

(a) Set the inputs of m using setm (locking pre-
emption with lockP and unlockP if needed);

(b) Invoke activatem(_,uc
m, ti), where ti is the

simulated time that task(uc
m) was scheduled

to execute.
(c) Get the outputs of m using getm (locking pre-

emption with lockP and unlockP if needed);

5 Related Work
Synchronous clocks are one of the solutions proposed to
tackle the more general challenge of co-simulating hy-
brid systems. Other proposals have been made in the
state of the art, but none of them tackle the problem of
discerning different simultaneous events in the context of
co-simulation. For instance, Cremona et al. (2016) pro-
poses a master algorithm for hybrid co-simulation. The
proposal includes support for absent signals, mandatory
implementation of rollback, zero duration step size, co-
simulation FMUs supporting feed-through, and predict-
able step sizes. However, it excludes algebraic loops, due
to the introduced non-determinism. Our proposed inter-
faces enables algebraic loop resolution, even when clocks
are involved, but does not provide guarantees of conver-
gence.

An extensive study of hybrid system simulation chal-
lenges was carried out in Mosterman and Biswas (2000),
and includes, for example, the possibility of an event it-
eration driving the system into chattering. And Tripakis
and Broman (2014), Broman et al. (2015) and Liboni et
al. (2018) focus such discussion in the context of the FMI
Standard, providing solutions to some of these challenges.
These works complement ours by helping importers assess
whether a given simulation scenario is well behaved. We
refer the reader to Gomes et al. (2018) for more references
in co-simulation of hybrid systems.

The goal of this paper is to describe the main mech-
anisms standardized in the FMI Standard that enable syn-
chronous clocked simulation and scheduled execution. We
can therefore highlight related work that share the same
goals.

Regarding SC simulation, we highlight the work in Ot-
ter, Thiele and Elmqvist (2012) and Elmqvist, Otter and
Mattsson (2012), that introduce the synchronous clocks
constructs used in the Modelica language, specified in
Modelica Association (2021). Such work, and references
thereof on synchronous languages (Benveniste et al. 2003;
Colaço and Pouzet 2003), were used as basis for the defin-
ition of the SC approach described here. The main differ-
ence is that an SC clock does not enforce a partition on
the equations that can be written by it. These differences
make it more difficult to ensure well-formedness of co-
simulation scenarios, but provide more flexibility, reflect-
ing the heterogeneous use cases of FMI.

In the domain of scheduled execution, we highlight the
OSEK/VDX (ISO 17356-3:2005 2005) and AUTOSAR
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Standards, which enable different suppliers to develop and
test software independently, and subsequently integrated
the different applications. Such work complements the
SE Interface by standardizing the importer environment,
where FMU SE instances can execute.

6 Conclusion
This paper summarizes the results of the FMI project de-
veloping interfaces to interact with clocks. This is a chal-
lenging task, because the kinds of simulation scenarios
covered can combine traditional events with clock ticks,
and may possibly be ill-defined while still conforming to
the FMI Standard. This is intentional, as the FMI aims at
flexibility, placing the burden of ensuring well-formedness
on the importer.

We have presented two interpretations of clocks. The
main differences between them lie in the degree of con-
trol that the importer has over the duration of computa-
tions, and on the behavior of the independent variable
with respect to the wall clock time. The formalization
provided is meant as an introduction to the clocks and their
conceptualization in the FMI Standard. The FMI Stand-
ard document is continuously being improved, and there-
fore remains the source of truth. We refer the reader to
(Junghanns et al. 2021) for an account of the most import-
ant features being developed for the FMI 3.0.
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