

开发和验证安全性相关的机电系统(如助力转向系统)需要合适的测试环 境。位于杜塞尔多夫的 ZF TRW 技术中心使用含有更多硬件设备的测试实 例。

___ 今转向系统对功能性和安 全性的要求日益严格,即 自动驾驶背景下的功能性 以及与更严格的转向支持可用性要 求相关的安全性。这两方面都必须 集成在符合 ISO 26262 标准的验证 过程中。此外,全面的验证程序还 需要考虑大量不同类型车辆平台方 面的因素。

车仿真模型的实时性使用户能在虚 拟车辆环境中测试 ECU 硬件。因此 能在真实的系统或部件还未获得时 执行基于模型的测试。用户可以仿 真错误和故障而不会对产品造成任 何风险或损坏,自动测试变得更加 容易和高效;另一优势是容易重现 测试并且不受天气状况的影响,这

统。测试中使用的硬件数量随测试 台的变换而增加,而建模部件的数 量则随之减少。这些台架将用用于 符合ISO26262测试阶段的连续测试 (图1)。这意味着依托若干台控 制器在环的仿真器,在早期阶段即 可经济高效的大范围测试。专门针 对更高级别集成的测试台其制造和

> 运营成本更 高。另一方 面,集成度 越高,测试

"dSPACE 环境的开放性拥有决定性优势,可以让我们实现 自己的模型,使用自己开发的测试台组件。

ZF TRW 技术中心的 Michael Moczala 博士 数量越少。

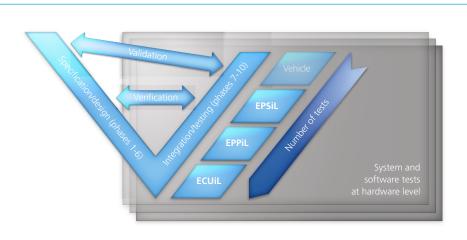
本下,尽快 的证明系列 的成熟度。

必须在富有

竞争力的成

虚拟化解决方案

成为应对上述挑战的解决方案,杜 塞尔多夫的 ZF TRW 技术中心使用 了虚拟化技术和硬件在环仿真器。 这意味着实际部件将和虚拟部件一 起共同构成一个控制环路。特别是 这些虚拟部件包含转向传感器、转 向器、驾驶员手臂和车辆通信的精 确模型。这些专门的子模型可以与 dSPACE 汽车仿真模型 (ASM) 库中 的组件轻松结合在一起。这让您可 以真实地实时仿真车辆动力学。汽 对于车载测试十分重要。


三种测试实例

基于不同的系统集成策略, ZF TRW 设置了三种具有不同的硬件模型分 割的 HiL 测试实例: ECUiL、EPPiL 和 EPSiL。这三种缩写代表:电子控 制单元(ECU)在环、电机动力单 元在环和电动助力转向系统在环。 在EPPiL实例中, ECU 和电动机共同 组成了一个功能单元。随后电动转 向将 ECU、电动机、转向传感器和 机械传动元件结合形成一个转向系

实例 1: 电子控制单元(ECU)在环

转向系统中使用的 ECU 含有转向功 能的数值算法和电动机的实际控制 控制算法(图2)。电机产生扭矩 并根据驾驶状况和驾驶员要求进行 调整。仿真这种交互作用需要在 ECUIL 测试环境中对电机进行精确 的电气仿真。通过 dSPACE 实时系 统中集成的电动机仿真器 (EME) 可 以达到所需精度。这种解决方案还 能让开发人员和测试人员调整电动 机特性。他们可以通过集成的 dSPACE 软件访问电动机参数、所测 信号及控制模型的所有其他数据。

图 1:三种测试台架将用于依据/5026262的硬件级转向算法功能确认,以及基于可双向追溯性的验证。各确认环节需要上级规范阶段的额 外信息(图1)。

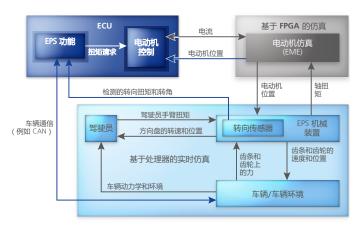


图 2: ECUIL 系统含有最多的虚拟部件。被测 ECU 与仿真环境进行电气连接。

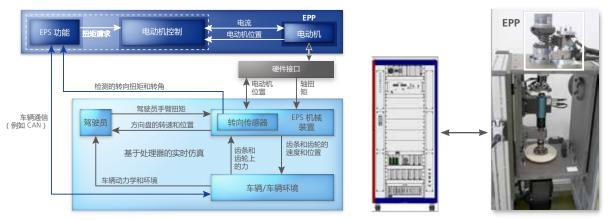
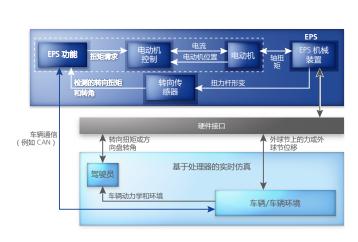



图 3: EPPIL 系统含有 ECU 和转向电机硬件。执行器和传感器用于将电机集成在仿真环境中。

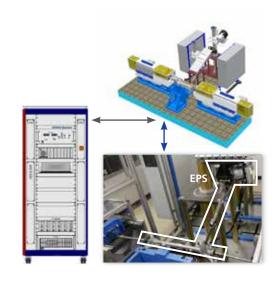


图 4: EPSiL 仿真器测试整个转向系统。因此模型的机械接口十分复杂。

"dSPACE 实时系统的灵活性令人印象深刻。我们可以为应用项目和前期开发使用自己的 HiL 设备。"

ZF TRW 技术中心的 Michael Moczala 博士

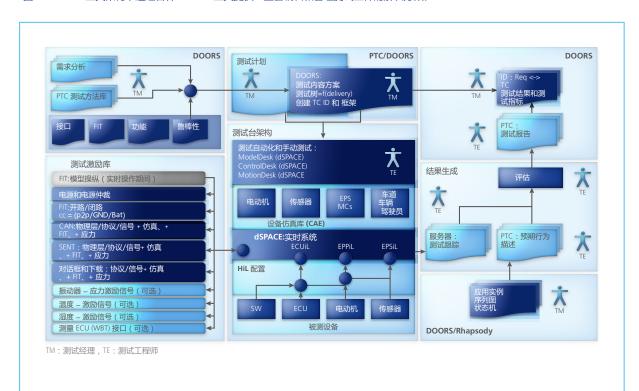
实例 2: 电机动力单元在环

在 EPPiL 测试中, ECU 连接到真实的转向电机(图3)。电机与旋转执行器之间按照所仿真的负载状况交互作用。在硬件接口中,配套传感器提供实际转向状态,执行器逆变器接收控制模型中生成的目标值。HiL 环路随后被虚拟部件闭合,类似于 ECUiL 系统。

实例 3: 电动助力转向系统在环

EPSiL 仿真器含有的虚拟部件最少 (图 4)。但是,整个转向系统与模型之间的机械接口需要大量运动部件和测量设备。例如,驾驶员扭矩和方向盘转角由一个直连的旋转

执行器控制。连接到两根拉杆的线性执行器被用作直接电驱动装置。 实时硬件与驱动控制器之间通过 TWINsync协议紧密联系,确保十分 精确地将控制变量动态传输到被测 转向硬件。多个转向力、扭矩、位 置和加速度传感器将转向状态测量 值传回实时模型并使控制环路闭 合。EPSiL 仿真器是 dSPACE 推出的 一站式解决方案。


灵活的测试环境

全部三种 HiL 测试台的控制环境不 仅能在虚拟环境中仿真驾驶员、车 辆和道路之间复杂的交互作用,还 能在相关的硬件接口上提供简单的 转向力和转向轨迹规格。合成激励 信号或记录的测量数据可以通过硬 件接口传送到被测装置。实时系统 的模块化特点创造出一种十分灵活 的环境。例如实时系统可以轻松连 接到现有测试台。

总结与评估

为了验证电动助力转向(EPS)系统, ZF TRW 使用了由多个 HiL 实例组成的测试概念,包括从 ECU 测试(ECU 在环)到测试台测试整个转向系统(EPS 在环)。与 HiL 仿真器硬件结合之后,杜塞尔多夫的该技

图 5: EPS HiL 工具架构,通过各种 dSPACE 工具提供一整套编辑和管理测试工件的解决方案。

"开放式 dSPACE 架构 – 实时硬件和软件工具 – 让我们能将集成策略映射到 HiL 基础架构中。"

ZF TRW 技术中心的 Thomas Maur

术中心创建了所有 HiL 测试台均可访问的一套完整的数据和软件基础架构。模型、用户布局和测试自动化脚本都在考虑整个系统的条件下进行开发。该领域下 dSPACE 产品的无缝性和灵活性成为突出优点。dSPACE 硬件与 ControlDesk® Next Generation、AutomationDesk、ASM 或 ModelDesk 等工具的结合赋予开发人员和用户最大的灵活性。实时应用程序的开放性设置(在 MATLAB®/Simulink®中介绍)使其可通过自定义的子模型进行扩展。这些详细的模型可以让开发人员掌控 EPS 系统严苛的开发和测试

任务。数据管理系统 SYNECT® 完善了软件基础组件,提供了 PTC® Integrity 测试管理和 DOORS® 需求管理(图 5)所需的接口。HiL 设备能使开发人员依据 ISO 公路车辆功能安全标准高效、可靠地开发和测试电动转向系统。测试实例(ECUIL、EPPIL 和 EPSIL)反映了 ISO 26262标准规定的集成策略。■

ZF TRW 技术中心的 Michael Moczala 博士 和 Thomas Maur

"通过将 SYNECT 集成在基于 dSPACE 的 HiL 设备中,我们填补了需求管理与测试之间的缺口。'DOORS 之间的测试'成为我们新的格言。"

ZF TRW 技术中心的 Thomas Maur

Michael Moczala 博士 Dr.-Ing.Michael Moczala 是德国杜塞尔多夫 ZF TRW 主动和被动安全技术公司的 CAE 专家。

Thomas Maur
Dipl.-Ing.(FH) Thomas Maur 是德国杜塞尔
多夫 ZF TRW 主动和被动安全技术公司系统集成和测试部门的主管。

