
TARGETLINK MES TOOLSPAGE 48

Solving SolvingSolving
Complexity

theComplexity

Puzzle
More and more extensive functionalities are being developed in work
groups that consist of a large number of software developers from various
development partners – a great challenge for the development process.
A reliable tool chain for effi cient, model-based software development is
therefore crucial. Simulink/TargetLink and the tools by Model Engineering
Solutions provide a tailor-made solution.

PAGE 49

How to beat complexity and build
consistency – even in large-scale
distributed development

Complexity the

Puzzle

TARGETLINK MES TOOLSPAGE 50

Figure 1: Distributed development in large teams. The model is defi ned in the domains Architecture Design and Algorithm Development and is
further enriched by the development of subfunctions. The results are then aggregated, validated and implemented on an ECU.

Challenge: Distributed Develop-
ment
The Simulink®/TargetLink® models,
the executable specifications of
the software functions, generate
not only code but also other arti-
facts, such as A2L files, AUTOSAR
XML files and software documen-

tation. If design and automatic
production code generation apply
only to individual software compo-
nents and functions, developers
do not detect inconsistencies until
they integrate the components.
Often, mechanisms for testing pre-
vious development steps do not

exist. This problem is becoming
more and more critical because
vehicle functions are increasingly
complex and require the develop-
ment environment to be distrib-
uted across many work groups.
To make modular, distributed de-
velopment of extensive functional-
ities efficient, developers need to
adapt development mechanisms
and modify a tool chain tailored to
Simulink/TargetLink.

Modeling Guidelines Improve
Consistency and Mitigate
Susceptibility to Errors
Simulink/Stateflow® provide many
modeling possibilities, but not all
of them can be used for efficient
production code generation.
Modeling guidelines lowering the
risk of faulty models are especially
important when many developers
work on the same software.
Adhering to these guidelines mini-
mizes the amount of reworking
needed, harmonizes modeling
styles, simplifies testing and serves

BenefitMethod

Modeling guidelines

Reuse (libraries, referenced models)

Single source specifications

Incremental code generation

Code generation from the Data Dictionary

Diff&Merge mechanisms via TargetLink
Data Dictionary and Model Compare

Complexity analysis with M-XRAY

 Consistency
 Lower susceptibility to errors
 Less rework

 Modular development
 Clarity due to model organization and hierarchy
 Reduced development effort by reusing the same
 models

 Easier exchange between development team members
 due to software and interface specifications in the Data
 Dictionary

 Quicker reviews
 Faster code generation
 Easier software integration and testing

 Generation of shared variables in one file

 Traceability of changes to interface definitions and the
 model

 Indication of appropriate model partitioning

DD/
database

Simulink
design engineer/

algorithm developer

TargetLink
software developer

TargetLink
software developer

TargetLink
software developer

Department 1 Department 2

Department 3

Software architect/
software administrator

Software integrator

DD DD DD

Department 5

TargetLink
software developer software developer

c
h

c
h

c
h

TargetLink

c
h

Department 4

DD: Data Dictionary

Algorithm Development Architecture Design

Implementation

PAGE 51

Figure 2: Comparison of different software specifi cations.

as a reference for reviews. It is also
easier for development teams to
exchange models and functional-
ities. Tools for automated guide-
line checks, such as the MES Model
Examiner®, check for guideline vio-
lations and correct them.

Partitioning and Reusing
Models
The single source principle is an
integral part of the distributed de-
velopment process. ‘Single source’
means that the same model is
used in different development
phases, from design to closed-loop

control to integration. Simulink/
TargetLink realize these mecha-
nisms by:
 Using Simulink library mecha-

nisms to reuse multi-instantiable
model parts or

 Using model referencing mecha-
nisms to integrate models into
other models

Simple Exchange and Adminis-
tration
In large development teams, tasks
such as function development,
software architecture and adminis-
tration, software development and

integration are rarely carried out
by only one person. Rather, a large
number of team members access
the same information (figure 1).
Since design engineers predomi-
nantly exchange, edit, and save
specifications, these have to be
consistent. TargetLink offers a spe-
cialized tool, the TargetLink Data
Dictionary (TL-DD), which by de-
fault supports various exchange
formats, such as XML or AUTOSAR
XML. The data objects in the mod-
el and in the Data Dictionary are
linked, so that the algorithm is
separated from the data, and the

TARGETLINK MES TOOLSPAGE 52

large functionalities more effi ciently
and faster.

Generating Code from the Data
Dictionary
Code is generated directly from
the Data Dictionary, independently
of the model, and global or shared
variables from the Data Dictionary
are generated to a fi le. This method
is used when:

 A file is created that contains
all global variables, such as inter-
face variables, and specifies the
access rights to them.

 All calibration parameters of dif-
ferent functions are generated
in a single calibration parameter
file

 Variables that are used in auto-
matically or manually generated
legacy code are generated in a fi le.

Efficient Diff&Merge Mecha-
nisms
When developing new software,
design engineers have to be able
to identify changes, especially
when different departments and
suppliers are involved. Design en-
gineers and integrators exchange
the modified software artifacts.
A reliable tool chain that identifies
modifications is therefore indis-
pensable. TargetLink Data Diction-
ary has the mechanisms needed to
compare different versions and
display changes (figure 2). These
modifications can then be traced
back to the model to see their ef-
fects on it. dSPACE’s Model Com-
pare, for instance, provides conve-
nient and comprehensive function-
alities to compare models.
DD mechanisms update interface
definitions automatically to ensure

data in the model and in the Data
Dictionary are synchronous.

Powerful Incremental Code
Generation
Incremental code generation is an-
other core method of distributed,
model-based development. Code
is generated incrementally for the
individual software units. The re-
percussions that changes to a
small function have on the overall
software functions are kept to a
minimum because the software
units are independent from each
other. Code only has to be gener-
ated for the unit that has been
modified, while the rest remains
unchanged.
Manual reviews are therefore less
time-consuming and code genera-
tion time is held to a minimum.
This makes it possible to develop

Figure 3: Analysis report of M-XRAY.

Com-
plexity

Name

Fuelsys 96

* Name Com-
plexity

* Name Com-
plexity

* Name Com-
plexity

EGO sensor 33

MAP sensor 33

Engine speed 33

Engine gas
dynamics

33 Mixing &
Combustion

59 System lag 9

Throttle &
Manifold

42 Intake
manifold

67

Throttle 350

Fuel rate
controller

58

Switchable
compensation

200

Structural Overview: Main Part

Fuel
calculation

75

Airflow
calculation

780

PAGE 53

Summary
There are many effi cient meth-
ods to control complexity and
consistency in distributed devel-
opment which can also be used
by large development teams.
Model partitioning, incremental
code generation, and tools sup-
porting change tracking are the
ingredients for success. Design
engineers can use measurements
and metrics to evaluate the par-
titioning. With this approach,
design engineers can develop ex-
tensive functionalities more eas-
ily and exchange the developed
subfunctions more effi ciently and
with less errors.

Reference values for local complexity

EvaluationReference value

MV ≥ 750

MV < 750

MV < 300

High

Medium

Low

Model Metrics
Using metrics, developers can com-
pare TargetLink models and evaluate
their complexity and quality. Safety
standards, such as ISO 26262, stipu-
late that the complexity of safety-
critical models must be evaluated
(see ISO 26262-6, §5.4.7, table 1).
Model metrics can also be used to
estimate the effort required for test-
ing and reviews. By capturing met-
rics values for different development
stages, developers can also monitor
a model’s development and identify
particularly complex and error-prone
model parts very early on.

Metrics such as the number of
blocks, modeling depth, interface
width, or cyclomatic complexity are
also used to measure model com-
plexity. However, these metrics are

Excursion

based on programming concepts
and are not often suited for evalu-
ating models. An evaluation of the
cyclomatic complexity of models,
for example, is not very informative
due to the data fl ow orientation in
Simulink.

The measurement of model volume
(MV), derived from Halstead com-
plexity measures, is establishing itself
in the industry as an important way
to evaluate model complexity. This
measurement allows developers to
evaluate model complexity because
it includes not only model blocks but
also the links between blocks, their
weights and their own complexities,
and the signals used to link blocks.

The MES Model Examiner® and the
M-XRAY AddOn can be used to

consistency when changes are
made (figure 2).

Validating Model Architecture
When TargetLink models are used
for distributed development, they
have to be divided into subfunc-
tions and subsystems. The com-
plexity of the individual subsystems
must be kept to a minimum to re-
duce the number of possible errors
and to ensure subsystems are read-
able and maintainable. At the
same time, this approach fulfi lls
the requirements of safety stan-
dards, such as ISO 26262, which
call for low complexity. Model
complexity can be checked auto-
matically by the MES Model Exam-
iner AddOn M-XRAY. M-XRAY cal-
culates and evaluates the complex-
ity of the overall model and the
individual subsystems.

analyze and evaluate TargetLink
models with model metrics.
M-XRAY analyzes the models and
calculates their volume and all rel-
evant metrics values. It then pres-
ents the results in a compact, struc-
tured table. This tool therefore
makes it possible to effi ciently cal-
culate complexity distribution in a
model and keep it to a minimum.

Literature:
Stürmer, I., Pohlheim, H., Rogier, T.:
“Calculation and Visualization of Model
Complexity in Model-based Design of
Safety-related Software”, (in German) in
Keller, B. et. al., Automotive - Safety &
Security, Shaker, pp. 69-82, 2010.

In addition, it collates all the model
metrics relevant for a qualitative
evaluation of TargetLink models
(see Excursion on model metrics).
M-XRAY generates an analysis re-
port (fi gure 3) that gives an over-
view of the model hierarchy and
the complexity of each subsystem.
This makes it easy to evaluate a
model’s complexity and to identify
particularly complex subsystems.

