仮想テストドライブによる Euro NCAP テスト

顧客の期待の高まりとともに、Euro NCAP 要件がさらに厳格になり、先進運転支援 システムの開発コストの増加が大きな課題となっています。dSPACE はこれに対す るソリューションとして、機能開発、仮想検証および HIL (Hardware-in-the-Loop) シミュレーション用の連携されたツールチェーンを提供します。

ate

on the Road

Euro NCAP テストをシミュレーションで実行する ことにより、開発の初期段階でアクティブセーフティ システムを評価することができます。

Euro NCAP:5つ星の安全性

各自動車メーカーは、Euro NCAP (European New Car Assessment Programme:欧州新車アセスメントプロ グラム)で適用される評価基準の引き上 げにより、新しい課題に直面しています。 Euro NCAPでは、新しい車両モデルを衝 突試験などによってテストしており、各基 準に対して最高で5つ星となる安全等級 を付与しています。この安全等級には、大 人の保護、子供の保護、歩行者の保護、 安全支援の4分野があります。

安全の決め手:アクティブセーフティ システム

最高等級の5つ星を獲得するためには、 アクティブセーフティシステムを導入する ことが重要になってきています。具体的に は、2014年からEuro NCAPの評価項 目には、市街地での走行(AEB City)お よび高速道路等での走行(AEB Inter-Urban)に向けたレーン逸脱警告 (LDW)システムや自動緊急ブレーキ (AEB)システムが含まれています。2016 年以降は、自動緊急ブレーキシステムの 評価に、歩行者などの交通弱者 (Vulnerable Road User)の検知機能 (AEB VRU/Pedestrian)が含まれること になっています。

ここでの課題は、セーフティクリティカル な状況で意図された通りに反応する(す なわち高い検知性能の)安全システムを 設計することです。ただし、(必要がない 場合にも緊急ブレーキが作動するなど) 過剰な反応によって誤検知するシステム は許されません。現在、Euro NCAPの評 価対象は、セーフティクリティカルな状況 での検知性能のみです。dSPACEでは、 Euro NCAP テストプロトコルに基づく幅 広いテスト環境 (図 2)を提供しています。 この環境では、シミュレーションによって アクティブセーフティシステムの妥当性を 確認できます。

Euro NCAP に準拠したテスト

ModelDesk には、すぐに使用可能な Euro NCAP テストシナリオのライブラリ が含まれています。 このライブラリは、 AEB City、AEB Inter-Urban、および AEB VRU/Pedestrian などの使用ケースに対 応した Euro NCAP テストプロトコルに準 拠しています。図1では、これらのテストプ ロトコルが示されています。ただし、Euro NCAPのアクティブな歩行者保護シナリオ の定義は、まだ最終決定されていませんの でご注意ください(2014年春現在での情 報)。 図 2 では、 必要な ECU ソフトウエア の妥当性確認を MIL/SIL シミュレーション で行う場合のツール環境の概要を示して います。図3では、MotionDeskでのテス トシナリオを、関連するAutomationDesk プロジェクトと共にビジュアル表示してい ます。AutomationDesk では、容易に操 作できるように設計された数多くの設定済

図 1:AEB City、AEB Inter-Urban、および AEB VRU/Pedestrian のための Euro NCAP テストプロトコル

みテストシナリオを利用することができま す。ユーザは、テストプロジェクトをロード した後に、テスト対象の ECU の機能(自 動ブレーキ、衝突警告)を同時または個別 に選択することができ、Euro NCAP カテ ゴリに従って計画されたテスト条件を指定 することができます。テストプロジェクトは すべて、簡単なマウス操作で開始すること ができます。

自動テストおよびテストレポート

自動テスト実行中には、テスト環境の個々 のコンポーネントは関連するライブラリ経 由でリモート制御されます。これにより、 各テストシナリオが Euro NCAP に準拠 した形で選択およびパラメータ化され、 実行、評価された後、正確に記録されま す。MotionDesk は、開発者がテストの 妥当性を評価できるよう、各テストの進 捗を表示します。テストが完了すると、 AutomationDesk は関連するすべての 情報を含むレポートを3つの異なる詳細 度で生成します。最初に、テスト領域(こ の例では AEB Inter-Urban)に関する 合計スコアの結果概要(図4)が示され ます。このレポートには、関連するテスト シナリオのグラフィカルな説明や個々のス コアを記載したテーブルが含まれていま

図 2: 仮想 Euro NCAP テストを実行するためのシミュレーション環境。 図 3 では、 関連する AutomationDesk プロジェクトと MotionDesk でのビジュア ル表示を示しています。

AutomationDesk: テストシーケンスの グラフィカルな表示、カスタムライブラ リ、レポートの自動生成

ASM (Automotive Simulation Models): 車両、道路ネットワーク、およ び交通環境をシミュレートするための オープンな MATLAB®/Simulink® モデル

ModelDesk: テストシナリオの定義と ASM のパラメータ設定用のグラフィカ ルユーザインターフェース(GUI)

MotionDesk: 交通シナリオのリアルタ イムなビジュアル表示のための 3D アニ メーションソフトウエア(車両、道路、道 路標識、交通信号などのオブジェクトラ イブラリ)

TargetLink: Simulink[®]/Stateflow[®]から 直接、量産コードを自動生成するソフト ウエア

VEOS: 標準的な PC 上でのスティミュラ ステストおよび MIL/SIL/PIL シミュレー ションにより、ECU ソフトウエアおよび バス通信の妥当性を確認 す。ユーザは、結果ツリー(スクリーン ショット左側)から個々のテストシリーズ の詳細なレポートへと移動することができ ます。これらのレポートには、テストシリー ズにおける各テストランの主要な結果が、 与えられたポイント数やスコアと共に表示 されます。また、個々のテストランの詳細 なレポートへのリンクも記載されています。 リンク先には、最終スコアだけでなく、個々 のパラメータ設定から計測結果のテーブ ルやグラフィックに至るすべての詳細結果 が含まれています。

運転支援システム用に最適化された テストフレーム

AutomationDeskによるテストでは、運 転支援システムの妥当性確認専用に開発 されたテストフレームが使用されます。こ のフレームは非常に便利で使いやすく設 計されており、その後のテストもこのフレー ムに基づいてごくわずかの追加作業で行う ことができます。ModelDesk上でテスト シナリオの定義を済ませると、基本的に3 つのステップを実行するだけでテスト環境 の作成が完了します。最初のステップで は、テスト環境に適応するようにテストフ レームを設定します。ここでは、テストプ ラットフォーム、計測する信号、テストパラ メータ、ModelDeskの最終的なテストシ ナリオなどを定義します。

2 つ目のステップでは、テストシナリオを 個々のテストラン (テストする車両の車速 など) ごとに個別にパラメータ化します。3 つ目のステップでは、テスト評価やロギン グ設定を統合するための専用領域がテス トフレームで作成されます。

ModelDesk でのテストシナリオの選択と 有効化、プラットフォームへのテストパラ メータのダウンロード、運転操作の制御、 およびデータ取得など、テストの実行に必 要なその他すべてのステップは既に実行さ れており、その結果はテストフレームに統 合されています。これらのステップは、適 切なタイミングで自動的にバックグラウン ドで実行されます。

このおかげで、テスト開発者は本来の業務 に集中することができます。ツールオート メーションの操作方法といったその他の 専門知識は必要ありません。

Euro NCAP を超えたテスト

テストでは、運転支援システムの検知性能 限界での挙動も評価できます。また、使用

するテストシナリオのパラメータを変更す ることで、誤検知を評価することもできま す。これは特に歩行者検知用のシステム設 計に適用でき、Euro NCAP の仕様だけ でなく、歩行者の進行方向や歩行速度な どの要素も変更できます。

CI. Pitter

8%

Image: Image:

AutomationDesk

Automotive Simulation Models (ASM)には、これらの要素をシミュレー トするためのセンサやオブジェクトモデル が含まれており、早期のシステム評価が可 能です。ユーザは非常に初期の段階で誤 検知率を評価し、それに応じてシステム設 計時にソフトウエアを変更することができ ます。さらに MotionDesk の次期バー ジョンでは、大人や子供の動作を非常にリ アルなアニメーションで表現できる機能も 計画されています。これは特に HIL システ ムによるカメラインザループ (camera-inthe-loop) テストで重要な役割を果たし ます。■

MotionDesk

図4: AutomationDesk で生成された Euro NCAP テストレポート

