
Bypassing
without Detours

Getting Ideas on the Road Faster

ECU INTERFACE MANAGERPAGE 36

dSPACE Magazine 1/2012 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

without Detours
Getting Ideas on the Road Faster

New Challenges
Nowadays, it is unusual to develop
completely new ECU software for
new vehicle generations: existing
code is adapted instead. Service-
based external bypassing, in which
a rapid prototyping system running
in parallel to the ECU computes
new functions, is a proven method
for this approach. The supplier has
to integrate the necessary interfaces
(called bypass hooks) in the ECU
software as service calls in the source
code. This process usually involves
an iterative consultation process
between the OEM and the supplier,
and in some cases additional, previ-
ously unplanned software adapta-
tions become necessary during a
project. For the vehicle manufactu-
rer, this can mean long project run
times and high project costs.
AUTOSAR ECUs present additional
challenges, because if software
components are developed by the
vehicle manufacturer or by project
partners and then made available to
the ECU supplier for integration into
the overall software as object code,
the ECU supplier is usually not able
to change the components by inser-
ting bypass hooks.
Even though current driving forces
behind innovation, such as electro-
mobility, CO2 reduction and road
safety, are pushing up the need for
suitable prototyping development
environments, budget restrictions
are often an obstacle. Affordable
starter systems are increasingly in
demand. At the same time, develo-

The ECU Interface Manager and the internal bypass option extend dSPACE’s
portfolio of tools for fast function development and service-based bypassing.
Function calls can now be inserted directly into the compiled ECU software,
and new ideas can be implemented directly on the target ECU. No ECU
source code or build environment is necessary.

pers soon come up against the limits
of using the external bypass method
to create fast control loops.

The Answer: Extended Tool
Chain
dSPACE offers the answer to these
challenges: an extended tool chain
for function development with the
bypass method. Besides their cur-
rent solutions for external bypassing
on high-performance rapid prototy-
ping systems, dSPACE now also
supports internal bypassing, also
known as on-target prototyping.
With an integrated development
environment in MATLAB®/Simulink®,
software functions can be developed
directly on the existing ECU, using
its free RAM and fl ash memory
resources.
A new tool is also available: the ECU
Interface Manager. This enables end
users to integrate bypass hooks for
internal and external bypassing into
the compiled ECU software. Thus,
special software versions from the
ECU supplier are no longer needed.

Benefi ts of Service-Based Bypas-
sing
dSPACE offers various services for
internal and external bypassing,
providing the following benefi ts:
 Bypass hook confi guration in

the modeling environment:
If an ECU software version with
service calls (bypass hooks) is
available, the modeling environ-
ment lets developers defi ne which
bypass functions to start with

PAGE 37

dSPACE Magazine 1/2012 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

A2L

HEX

XML
Config.

(encrypted)

HEX'
(with

service calls)

A2L'

service calls)

 Service calls
 Bypass function

which bypass hook, and which
ECU variables to read and write.

 Data consistency:
When several ECU variables are read
and written, double buffer mecha-
nisms can ensure data consistency.
This option is especially important if
the execution of the bypass func-
tion and the reading of input values
and writing of output values take
place in different ECU tasks.

 Safety:
There are various safety mecha-
nisms, including error counters
with automatic bypass hook
switch-off and plausibility checks
before writing variables.

Integrating Service Calls into
the Compiled ECU Software
In internal and external bypassing,
the ECU Interface Manager can inte-

grate service calls into the compiled
ECU software (hex fi le) without any
changes to the ECU source code.
Very little information is needed in
addition to the hex fi le and the asso-
ciated ECU variable description (A2L
fi le): just information such as the
details on free RAM and fl ash memory
areas and entry points for the hex
code parser, which the ECU supplier
usually provides in an encrypted
XML confi guration fi le.
The ECU Interface Manager analyzes
the hex code to fi nd function calls,
accesses to ECU variables and con-
ditional branches. The confi guration
fi le defi nes which information the
end user will be able to see in the
ECU Interface Manager. Filter and
search mechanisms locate dedicated
variable accesses and function calls
in the program sequence. After spe-
cifying the service call positions,
users can intuitively insert the service
calls into the ECU code and genera-
te modifi ed A2L and hex fi les at the
push of a button. Access to the ECU
supplier’s build environment is not
necessary. With this method, it takes
end users only a few minutes to inde-
pendently integrate the bypass hooks
into the ECU software. Thus, changes
to the original software status can
be limited to a specifi c bypassing
task, thereby minimizing memory

Figure 1: Fast integration of service calls via the ECU Interface Manager.

Figure 2: Example implementation of internal, service-based bypassing using two bypassed
ECU functions.

Function i

Function j

ECU

 Service call #1

 Service call #2

 Service call #3

 Service call #4

Function k

 Internal
bypass function j

 Internal

 Read inputs

 Write outputs

 Read inputs

 Write outputs

ECU

 Internal
bypass function k

ECU INTERFACE MANAGERPAGE 38

dSPACE Magazine 1/2012 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

The Benefi ts
at a Glance:

 End users can quickly integrate
function bypass hooks into the
compiled ECU software

 Support of on-target proto-
typing and external bypassing

 No need for access to ECU’s
source code and build environ-
ment

 Easier bypass hook integration
thanks to graphical representa-
tion of function calls, condi-
tional branches and variable
accesses in the ECU software

 Switching between internal and
external bypassing without
modifying the model

requirements and effects on the
ECU’s run-time behavior. For example,
in typical applications, bypass hooks
for internal bypassing with Infi neon
TriCore™ microcontrollers require
32 bytes in ECU RAM and 2 kBytes
in the ECU’s fl ash memory.

On-Target Prototyping
The new internal bypass option for
the RTI Bypass Blockset supports
model-based function development
directly on an ECU. It even allows
users to switch between external
and internal bypassing without
changing the function model. For
example, if the ECU’s RAM and
fl ash memories are too small during
internal bypassing or additional
sensor signals are needed, develo-
pers can quickly switch to an external
prototyping system without modify-
ing the models. The same applies in
the opposite direction, for example,
when a function that was developed
in external bypassing has to be vali-
dated directly on ECUs in a fl eet test.
Moreover, external and internal by-
pass parts can be combined in one
function model in any possible way.
Because ECUs with production soft-
ware versions usually have very little
free RAM and fl ash memory, one
possibility would be to compute
function parts in very fast rasters on

the ECU and execute calculations in
slower control loops on an external
prototyping system.
After reading in the A2L and hex
fi les via the relevant RTI bypass
blocks, in the modeling environ-
ment the user can select the service
calls that were previously integrated
by means of the ECU Interface
Manager and use them to read and
write any ECU variables or to call
the bypass function. The code for
the function model is then genera-
ted, linked to the free area of the
ECU’s fl ash memory, and merged
with the original ECU software – all
with push-button ease. The result is
an A2L fi le with added internal bypass
function variables, and new hex
code that can be fl ashed to the
ECU with proven tools. During the
modeling process, an info block
indicates how much free RAM and
fl ash memory is available. When
the Simulink® Coder™ is used to
generate 32-bit fl oating-point code
for a function model with around
400 blocks and 30 input and out-
put variables, for example, about
30 kByte fl ash memory and less
than 4 kByte RAM memory are
required on Infi neon TriCore™

microcontrollers.
The ECU Interface Manager and
the internal bypass option currently

Figure 3: Developing a software function directly on the ECU with the new internal bypass option for the RTI Bypass Blockset.

HEX''

A2L'' Code

Data

Free area
in the ECU flash memory

dSPACE Internal Bypassing Service (ID)

 Bypass function

ECU flash
programming

 Original function

 Service call #2

HEX'
(with

service calls)

A2L'

service calls)

Internal Bypassing:
example model

 Service call #1

support Infi neon TriCore™ micro-
controllers. There are no dependen-
cies on ECU platforms of specifi c
suppliers. Other microcontroller
families, such as MPC5xxx from
Freescale, will follow in the second
half of 2012. 

PAGE 39

dSPACE Magazine 1/2012 · © dSPACE GmbH, Paderborn, Germany · info@dspace.com · www.dspace.com

