Connecting Simulink to OSEK:
Automatic Code Generation

for
Real-Time Operating Systems
with TargetLink

Lutz Koster, Thomas Thomsen, Ralf Stracke
dSPACE

Translation of

“Von Simulink nach OSEK:

Automatische Codegenerierung fiir Echtzeitbetriebssysteme
mit TargetLink",

published on the occasion of

the congress Embedded Intelligence 2001,
Nuremberg, Feb 14 - 16.

dSPACE
v/ 4

Connecting Simulink to OSEK: Automatic Code Generation for
Real-Time Operating Systems with TargetLink

ABSTRACT

This paper describes how one further step towards
integrating the complete software development process
of embedded real-time systems in Simulink and
Stateflow is achieved. Automatic code generation in
production quality is already possible with dSPACE's
TargetLink. The next step is true integration of real-time
operating systems into the code generation process.
The OSEK standard is applied for this purpose and
briefly described at the beginning. The article then
focuses on concepts and techniques used by TargetLink
to achieve OSEK-compliant code generation. It is
shown, how operating system functions and properties
are specified on a block diagram level, how code of
different sample rates is bundled into different tasks,
how tasks can communicate among each other and how
all this can be simulated on a target system. The paper
also gives striking evidence of how powerful standards
can boost tool development and how they can help
integrate different tool systems, which had been
completely separated before.

INTRODUCTION

The software development of embedded systems is
increasingly being done with the help of simulation tools
that are programmed with executable block-diagram
specifications. One of the most popular tool suites is
MATLAB, Simulink and Stateflow from The MathWorks,
which became the de-facto standard in the embedded
systems industry. In 1999, dSPACE introduced
TargetLink to the market, which extends Simulink and
Stateflow with a production quality code generator.
TargetLink is able to produce ANSI-C code and
processor/compiler-specific C code that is highly
readable and small enough for resource-limited,
embedded real-time systems. Since then, automatic
code generation with TargetLink has been proven in a
wide range of control applications. dSPACE now widens
the scope of code generation with the next version of
TargetLink by supporting OSEK-compliant real-time
operating systems.

Lutz K&ster, Thomas Thomsen, Ralf Stracke
dSPACE

'

Application
TargetLink Code Legacy Co
HAL RTOS
Libraries System

Configuration Tools Generator

Microcontroller

Figure 1: ECU software layers

Modern ECUs, as they are used in automobiles and
aircrafts, typically contain 3 distinguished software layers
(see Figure 1). The highest layer is the application code
and contains signal processing, control strategies,
failsafe and diagnostic functions. Simulink and Stateflow
are perfectly suited to specify and simulate these
functions. TargetLink then can be used to automatically
generate production code.

The lowest level is the hardware abstraction layer (HAL),
which contains basic /0 routines, interrupt service
routines, device drivers and communication handlers.
Block diagram specifications do not offer significant
advantages for this layer - they are directly programmed
in C or assembly. Many of these routines are readily
available from external sources or are generated with
the help of processor-specific configuration tools.

In-between these layers is the real-time operating
system (RTOS), which is responsible for scheduling
tasks and managing intertask communication and
processor resources. Real-time operating systems for
embedded systems are commercially available from a
variety of vendors. They, too, typically come with a
configuration tool and a system generator that

automatically builds the real-time kernel according to the
user's specification. In recent years, the OSEK standard
emerged to standardize the Application Program
Interface (API) and functionality of real-time operating
systems. This makes it possible to connect code
generators to kernel builders and to make the generated
code compatible to the real-time kernel.

OSEK: GOALS AND CONCEPTS

The goal of the OSEK specification is to support the
portability and reusability of application software. To
achieve this goal, the OSEK working groups defined
abstract and application-independent user interfaces in
the areas of the real-time operating system,
communication and network management. These
interfaces are also independent of hardware and
network. Different applications require different features
of a real-time operating system. Small microcontrollers
have only small amounts of memory, so ROM and RAM
usage must be very economical. Bigger systems may
need special features of the operating system and the
limitations concerning memory usage may be less
stringent. These different cases demand a scaleable and
configurable real-time operating system.

The OSEK specification provides a pool of services and
processing mechanisms, but leaves a certain amount of
flexibility to allow optimal adaptation to different
microcontrollers.

For clarity it shall be repeated that OSEK itself is not an
operating system product. It only specifies a certain API
and behavior. There are several commercial OS
products available on the market that are compliant to
the OSEK standard. Hereafter, they are referred to as
OSEK operating system implementations.

The main benefits of the OSEK standard are:

* Savings in costs by reducing development time.

 Enhanced software quality because well-tested
software modules can be reused in different
applications.

» Because OSEK is scalable, the specification of the
operating system allows optimal adjustment to the
specific application and thus reduces memory usage
in small systems.

» The portability and reusability of application software
for different hardware platforms and possibly also for
different OSEK-compliant real-time operating system
implementations.

The OSEK specification describes a static real-time
operating system where all operating system objects
such as tasks, events, messages and resources are
created at compile time. These objects are defined, and
their attributes are described offline with the help of the
OSEK Implementation Language (OIL). OSEK defines
several mandatory standard attributes - like the priority
of the object “TASK” - which must be implemented by all
OSEK operating system implementations. Some of them
are defined to ensure scalability of the operating system.

However, the OSEK operating system developer is
allowed to define additional implementation specific
attributes for the OSEK objects.

The application software can be subdivided into tasks
according to their real-time requirements. For memory
efficiency reasons, OSEK distinguishes between basic
and extended tasks. Basic tasks can assume the states
‘running’, ‘ready’ or ‘suspended’. A task is running if the
processor is assigned to it. At any one point in time, only
one task can be in the running state. A task is ready, if
all the requirements for transition to the running state are
met, but the CPU is assigned to another task. The
scheduler decides when a ready task becomes a
running task. The ready task can interrupt a running task
if the priorities and preemptibilities allow this; otherwise,
it has to wait until all tasks with higher priorities have
finished. In the suspended state, the task is passive.
Before it can enter the ready state, it must be activated.
In addition to basic tasks, extended tasks can enter a
‘waiting’ state where they wait for at least one event
before continuing execution.

The functionality of the operating system is subdivided
into different conformance classes to ensure scalability.
In the two basic conformance classes, only basic tasks
can be used. The two extended conformance classes
allow the usage of basic and extended tasks.

An OSEK operating system uses priority-based
scheduling. In addition, the priority ceiling protocol is
included for resource handling. The use of the OSEK
object resource is similar to the use of semaphores in
other operating systems, except that the priority ceiling
protocol avoids deadlocks during resource occupation.
Resources can be used to manage concurrent accesses
of tasks and interrupt service routines with different
priorities to shared resources like memory or hardware.

OSEK defines counters and alarms to process recurring
events. Alarms are assigned to counters that count time
ticks or other recurring signals such as angle-based
encoder interrupts. An alarm triggers an event or
activates a task whenever the counter reaches a
predefined value. When the alarm is specified as being
cyclic, the associated task is called periodically, for
example, at certain sample times or certain crankshaft
angles. Single alarms can be used, for example, to
trigger a task some defined time after a certain event
has occurred.

OSEK also defines message-based communication
between tasks (intertask communication). Messages can
be sent between tasks inside one ECU or they are used
for communication between tasks on different ECUs.

For extended tasks the event mechanism can be used
for task synchronization. An extended task can wait for
an event until it is set by another extended task, a basic
task, an alarm or an ISR (interrupt service routine). After
the event is set, the waiting task leaves the ‘waiting
state’ and enters the ‘ready state’.

The processing of interrupts is supported in OSEK by
different categories of ISRs. Category 1 ISRs are not
allowed to call any OSEK API function. They are
absolutely independent of the operating system. ISRs of
category 2 are allowed to call API functions at any place
inside the ISR, whereas category 3 ISRs are divided into
two sections: in the first section no calling of any API
function is allowed, in the second section it is. This
second section must be nested by the special macros
EnterISR() and LeavelSR().

MODELING REAL-TIME (OSEK) APPLICATIONS
IN SIMULINK / TARGETLINK

GENERAL MODELING STYLES

In recent years, Matlab/Simulink/Stateflow has become
a standard tool for modeling and offline simulation in
control design. It is optimally tailored to the needs of the
control engineer and provides a powerful set of block
libraries and toolboxes. The range of applications where
Matlab/Simulink/Stateflow is used is constantly growing.
In addition to the classic offline simulation of dynamic
systems, the tool is used as the specification basis for all
phases of the electronic control unit's modern
development cycle. As a graphical and executable
specification, it replaces the classic, verbally-oriented
approaches. With this extended usage come new
requirements that formerly were not important. In
conjunction with highly efficient automatic production
code generation, Matlab/Simulink/Stateflow now is used
to describe the complete application software. Here the
real-time operating system plays an important role, and
OSEK is becoming increasingly popular in the
automotive field. The new version of dSPACE's code
generator TargetLink provides seamless integration of
OSEK-conformant operating systems into the
Matlab/Simulink/Stateflow environment and the code
generated from it. In contrast to many CASE tools that
have their origin directly in software development, where
tasks, messages, resources, etc. are a natural part of
the world, the classic domain of
Matlab/Simulink/Stateflow is function design, which has
a completely different abstraction level. Automatic code
generation for real-time operating systems out of
Matlab/Simulink/Stateflow has to deal with the problem
of mapping Simulink's modeling concepts onto available
operating system services and providing new
specification options - e.g. by new blocks - to support
important operating system features. The code
generator must be able to produce a proper real-time
implementation for an unchanged Simulink model by a
well-considered default behavior, and provide all the
options necessary to optimally adjust the code to
particular user needs.

A real-time application based on a (multitasking) real-
time operating system (RTOS) is divided into different
software units that are called by the RTOS. These tasks
usually combine parts of the software with common real-

time requirements such as timing, priority etc. They can
be called by the RTOS automatically at certain times, or
activated by hardware or software events. Simulink
models initially do not contain tasks but are built up from
other components. The code generator has to map
these structures onto the RTOS software units.

A Simulink model usually is divided into hierarchical
subsystems. The functional blocks of these subsystems
are executed either cyclically with a certain sample rate
or driven by certain events. While Simulink generally
allows blocks with different sample rates to be mixed
arbitrarily, production code generation reasonably
requires that blocks with the same sample rate are
combined to form system units.

&)
Ing
R4
% crank
Chart

r-r—-——-——-—- - - - - - - - = vy -
) | . Trigger() |
In1 | _Hl :)]
@—L> I utt
nz | [§> |
@_1_. Crankshaft |
nz | |

100ms

| v |

| Trigoer) |

| ji |

| —|_. |

| |

| FC_System |
O » —>{(2)
Ind |

Figure 2: Typical Simulink/Stateflow diagram

Figure 2 shows a typical Simulink/Stateflow diagram that
contains cyclic and event-driven parts. In an engine
control application, for example, the electric throttle
control algorithm executes periodically and the
ignition/injection part is driven by crankshaft events.
Generating code implementing this model as a real-time
(OSEK) application contains the following steps.

The 10-millisecond and the 100-millisecond subsystems
are implemented as separate operating system TASKS.
The corresponding functions in the C code must be
extended by the necessary task declarations. The RTOS
must be configured in such a way that these tasks are
called periodically with the specified rate. In an OSEK
application, this is realized by alarms that are defined,
assigned to timers and initialized properly at system
startup.

The crankshaft synchronous subsystem is also
implemented as a separate task. It usually is assigned
directly to a corresponding hardware event. The
statechart in Figure 2 only serves to generate the
appropriate trigger in the offline simulation. It has to be

ignored by the code generator. The user therefore
places the statechart outside the focus of the code
generator, thus no code will be generated for the
statechart. This is an important concept. Simulink
models usually contain parts that specify the controller
and additional parts that are only needed for simulating
the controller, e.g. plant subsystems for closed-loop
simulations. The code generator only works on the
controller part of the model. In Figure 2, this is marked
by the dashed rectangle.

Generally, asynchronous functions are modeled as
triggered subsystems. |If triggered subsystems are
implemented as separate tasks, they must be activated
by the source which releases the trigger. FC_System in
Figure 2 is activated by code that is automatically
generated into task 100ms. If the trigger comes from
outside the scope of the code generator, as for
Crankshaft, the user must assign task activation to the
proper source manually, e.g. to a hardware interrupt.

The data connections between the subsystems/tasks
must be handled carefully by the code generator. It must
be considered that tasks may interrupt each other
requiring that some data accesses must be protected to
avoid inconsistencies. As a result, the code generator
sometimes creates local copies of global data for further
processing. Data connections that cross the border of
the code generator's scope - e.g., to pass data to hand
written code within the same ECU or to send data via a
bus to different ECUs - must be established, for
example, by operating system messages or by service
routines that access data resources.

Finally, an offline description of the application has to be
generated as the input to the tool that builds the tailored
real-time kernel. This is done via the OIL file (OSEK
Implementation Language), which is part of the OSEK
specification.

The following sections describe the different steps
mentioned above in greater detail.

TASKS

As described in the previous section, the Simulink model
is partitioned into tasks. If the user makes no specific
input, TargetLink uses a default partitioning. However,
by means of special blocks (the task block, which is
described later), the user can completely determine
which subsystems are assigned to which tasks.

By default, TargetLink groups together all the model's
periodic subsystems that have the same sample rate in
separate tasks. Triggered subsystems with common
trigger sources are combined, and their code is assigned
either to the trigger source's task where this is within the
code generator's scope (FC_System in Figure 2 is
associated to task 100ms) or to a separate task.
(Crankshaft in Figure 2).

By placing a special task block in a subsystem, the code
generator's default task partitioning can be overruled.

The task block explicitly assigns a subsystem to a
certain task. FC_System in Figure 3 will now be
implemented as a separate task. Its trigger source in
100ms will not directly call the code of FC_System any
more, but will only produce the OSEK 'activateTask'
command for the corresponding task; when it will be
scheduled depends on task priorities and
preemptibilities.

Triggero
oo
out

— 1 Crankshaft

100ms

()
¥

I

I

Trigger[)

B

FC_System
(2

Ind Out2

10ms

Figure 3: Task block to define separate tasks

¥

h

As shown in Figure 3, it is also possible to assign
several subsystems to one common task. The code for
100ms and 10ms will now be included in the common
Task B. This combined task is scheduled periodically at
ten milliseconds, which is the highest common
denominator of both the sample rates involved. A
counter encapsulates the code of 100ms and executes it
upon execution of every 10th task. Note, that the worst
case execution time must be less than 10 ms.
Therefore, in most cases only subsystems with the
same sample rate are assigned to the same task.

The possibility of combining subsystems distributed over
the model to create common tasks allows a feature-
oriented modeling style. It is not necessary to partition
the model at the highest level with regards to sample
rates or membership in certain events. Instead, the
model can be divided into parts belonging to the same
high level functionality. An electronic control unit usually
contains dozens of so-called features (e.g., throttle
control, idle speed control, EGR, injection, etc.) that are
developed by different teams. They form separate
subsystems at the topmost model level. Any of them
may contain parts that are executed at different sample
rates. Bundling these parts (processes) of the same
sample rate to one task avoids scheduling overhead.

The task block not only serves as a mean to assign
subsystems to certain tasks, but also provides an
interface to specify attributes of the corresponding task.
Figure 4 shows the dialog which opens when the task
block is double-clicked. The current subsystem can be
assigned to an existing task, or a new task can be

created. The standard OSEK attributes such as priority,
number of activations, full preemptive or non-
preemptive, used resources or owned events, etc. can
be specified. Some of these settings influence only the
generated OIL description and not the actual C source
code, others - such as priority and schedule - are used
by the code generator to optimize the code, e.g., for
data exchange, which will be shown in a later section of
this paper. Figure 4 shows two tabs in the task block's
dialog: OSEK Standard and OSEK XYZ. OSEK itself
requires a set of attributes that each RTOS vendor has
to provide, but allows additional implementation-specific
settings. For several commercially available operating
systems, these specific options can also be selected
from TargetLink via the OSEK XYZ tab of the task
dialog. However, this does not limit the use of TargetLink
for these supported OSEK products. A later section will
show how TargetLink can interact with any other desired
products and the corresponding operating system
configuration tools.

#|TargetLink: TASK Configuration & B3

OSEK Standardl OSEKKYZ |

Tasks

— R
T_100ms
T_crankshatt EVENT:
[“Eventi P
Event2 «
Eventl
=l RESOURCE:

FRIORTY: [4 | 4] SCHEDLILE: | _Resourcet [N [IGHIER

5 MEH 8 EULL Resource? v
acTraTion: [1 =
AUTOSTART:

[

" TRUE & FALSE

"EP'N:E Apply | Hevertl Help | Cance\l Cloze |

Figure 4: Task block dialog

When tasks are created, either by the code generator's
default mechanism or by explicit user requests, the
necessary declarations are generated into the C source
code (e.g. TASK(T_100nms) { ...), and the task
activation itself is initiated. Activation of periodic tasks is
assigned to automatically generated OSEK alarms that
are initialized at system startup. Triggered tasks are
activated by code that is included in the task of the
trigger source. If this source is outside the scope of the
code generator, a piece of code (macro) that performs
this activation is generated, and the user must assign it
to the trigger source, e.g., an interrupt.

INTERTASK COMMUNICATION

In Simulink, data exchange is modeled by signal lines. In
a task-driven preemptive environment, data exchange
becomes a more complex issue. One important job of an
RTOS is to manage the communication between tasks.
Inter-ECU communication is data exchange between
software distributed to different physical hardware units
and usually is handled by some kind of network layer.
Intra-ECU communication is connections between tasks
running on the same processor. While the former always
requires operating system services (OSEK messages),
the latter can optionally be implemented without OS
interaction.

PRIORITY: |5 ﬂ SCHEDULE:
O MON 5 FLILL

A
signal o
lml 2 signal3 Task B I

100ms
10ms

4-”

PRIORITY: 4 il SCHEDULE:
0 WOR & FULL

;

Task C

ms f

FRICRITY: 3 il SCHEDLULE:
o MOM O FULL

Figure 5: Communication between Tasks

Figure 5 shows a scenario where tasks with different
sample rates, priorities and preemptibilities exchange
data. Task A sends signall and signal2 to Task B.
Global variables that can be accessed by both tasks are
usually used for this data exchange. Since Task A is
preemptive (in OSEK terms SCHEDULE = FULL) and
Task B has a higher priority, it may happen that Task A
is interrupted after signall has already been updated,
but while signal2 still has its old value. Consequently,
Task B would work with values for signall and signal2
from different time steps. This inconsistency can lead to
unwanted behavior and normally has to be avoided. In
this example Task A is responsible for implementing a
mechanism that is suited to protect against
inconsistencies. One possible way is to use local copies
for signall and signal2. At the end of Task A there is one
compact block of code that copies this local
representation to the corresponding global variables. It
still has to be ensured that Task A is not interrupted
during this copying procedure. This can be done by
disabling interrupts or by using the OSEK service
resource. The introduction of local working copies

ensures that this time critical section is as short as
possible.

It depends on the task settings and the related question
'‘who can be interrupted by whom' to determine if the
sender or the receiver is responsible for implementation
of inconsistency protection. In Figure 5, signal3 is also
potentially exposed to an inconsistency. Although it is a
single data line, it represents a vector, and accesses to it
could be interrupted. However, in the particular case of
Figure 5, the sender cannot be interrupted by the
receiver (Task A has a higher priority than Task C) and
vice versa (Task C is not preemptive, i.e., SCHEDULE =
NON). In this case, both tasks can use the global
variable for signal3 directly, which is of course the most
efficient way of data exchange.

Operating systems usually provide a means to exchange
protected information between tasks. OSEK defines
messages as a common interface for protected intra-
ECU communication and for inter-ECU communication
based on a common bus. For data exchange between
tasks on the same ECU, these messages are not always
the most efficient implementation since the automatically
implemented inconsistency protection is sometimes not
necessary, as shown in the last example. Per default,
TargetLink therefore automatically selects the most
efficient implementation (global variables with or without
copies, interrupt lock, resources, etc.) depending on the
task’s priority and preemptibility. This default behavior
can be overruled by explicit user settings. For instance,
this might become necessary if the user cannot ensure
that these task settings will remain unchanged after
code generation or if a signal goes outside the scope of
the code generator.

< |TargetLink: pos_contiol/control_out [Outport] M= E3
Code EENUII Flot Signal | FProperty Managerl Last modified: 08-Jun-2000 14:17:35
Dutputl Logging&Autoscalingl Inter Task Communication Documentationl
& default ¢ global Variahle " Buffer = hessage
¥ local copy send W add. buffer send & gueued
™ local copy receive ¥ add. buffer receive fqueue depth:
. . o =
Consistency save Consistency save
rmechanism: mechanism: ® W
i nothing i nothing
© Interrupt lock © Interrupt lock ¥ with copy
© Scheduler lock Scheduler lock
 Resource lock Resource lock
’“FCE Apply | F\evertl Help | Cancell Clase |
Feady

Figure 6: Specification of Inter-Task Communication
SPECIAL BLOCKS
Special blocks that are not included in the normal

Simulink blockset provide a specification interface to
specific OSEK features and reproduce their behavior

during simulation. The Alarm/Counter block is given as
an example.

As described in the Tasks section, alarms are
automatically used to set up time-periodic tasks. In
addition, TargetLink provides a special block that makes
the general alarm functionality of OSEK available to the
user. Since each OSEK alarm is assigned to a counter,
the TargetLink alarm block is always combined with a
special counter block that was designed especially for
this purpose (see Figure 7).

max allowed value [255 =
min oycle |_2 ﬂ

trigger alarm

counter input

swstemtimer Timeout
¥
i+ relative " absolute Trigger(]
Incrementl 20 ﬂ
Cvclel 1] ﬂ
I Trigger input Task 1

Figure 7: Alarm / Counter blocks

Although the alarm and the counter always form a unit,
they are divided into two blocks because one counter
can have several associated alarms. Code for the
counter itself will usually not be generated because a
hardware counter/timer or an operating system counter
will be used. The TargetLink counter will be used for
offline simulation only in this context. The settings in the
block dialog allow simulation settings adjustment to the
real counter behavior and reflect the standardized OSEK
attributes for counters. The output signal of the counter
is connected to one or more alarms. In the alarm block a
counter value specifies when the alarm expires (the first
time) and the task that is connected to this alarm by a
(function call) trigger is activated. Cycle optionally
defines the periodicity of the alarm. Alarms are set up at
system initialization - e.g., for time-periodic tasks - or
when a certain event occurs at runtime. The second
case is modeled by a special input for a trigger that can
be released by any source within the model. Absolute or
relative alarms can be specified. The former expire at
absolute counter values, whereas the latter expire at a
certain number of time ticks after the alarm was
triggered.

OSEK CONFIGURATION, TOOL INTERACTION

A typical ECU application consists of several C source
files. Some of them have been generated automatically

by TargetLink, others are supplied by hand
programmers. As an input for the System Generator,
there is one OIL file describing the complete real-time
application, both the automatically generated and the
handwritten parts. The System Generator is a tool
provided by the vendor of the operating system that
analyzes the OIL file and optimally scales the OS for the
specific application. It generates C files and libraries that
are linked together with the other source files to form the
final executable program (see Figure 8).

OIL Database

TASK T_10ms
{

PRIORITY = 2; OSEK
RESOQURCE = {res1}; e

.

TargetLink Model

Configurator

TASK I_O
{ 4
}.

TASK(T_10ms) Handcode .
I oil
GetResource(res1);

u =sumU; Svst
stem
ReleaseResource(Res1); y * .C
y Generator
¥ _model.c ¥ v
make

| Executable program |

Figure 8: Tool interaction

A critical path often is interaction and cooperation
between the tools involved and the hand programmers.
While one part of the application and the corresponding
OIL description is supplied by TargetLink, the hand
programmer or any other source delivers an additional
part. In contrast to the C code that can be derived from
several source files, the final OIL description must be
one single document. Most OSEK vendors provide
graphical tools to conveniently generate the textual OIL
file. Such tools are especially useful since all commercial
OSEK implementations have a lot of possible options in
addition to the standard. Some option selections are not
independent of others and without tool support, it is easy
to produce inconsistencies. On the other hand, the user
should be able to specify most of the attributes for those
application parts that come from Simulink directly in the
block diagram. It has already been pointed out that
some of these attributes can be used for code
optimization. TargetLink therefore works with an external
OIL file as the database for the RTOS settings. It can
import and export this data format. Simulink components
(e.g., subsystems) can be assigned to OSEK objects
(e.g., tasks) that already are in the OIL database, or new
entries can be created. The user can choose the most
suitable tool to enter attributes with. For example, it is
possible to specify the basic, i.e., OSEK standard,
attributes of tasks within the TargetLink environment and
complete the description with the OSEK vendor-specific
settings using the OIL configurator. By using this
external database, consistency can be ensured.

Changes made in any tool are automatically applied by
the others.

SIMULATING PRODUCTION CODE FOR OSEK

One of the major strengths of Simulink is that it provides
an executable specification. The behavior of the
controller to be designed can be simulated offline on the
PC, often using plant models to close the loop (see
Figure 9).

Besides this Floating-Point Simulation Mode of the
standard Simulink environment, TargetLink provides two
further modes:

* Production Code Host Simulation Mode

* Production Code Target Simulation Mode

’_' Controller Plant

Figure 9: Floating-Point Simulation on Host PC

In Production Code Host Simulation Mode, the
TargetLink-generated (fixed-point) production code is
used for simulation instead of the original Simulink
blocks (software-in-the-loop). Technically, the generated
code is inserted into an s-function (the Simulink block
that allows C code to be integrated into simulation) that
replaces the original controller part of the model. Using
this simulation mode, the generated code can be
validated and fixed-point arithmetic effects such as
guantization errors, saturation or overflows can be
tested. The numerical effects that occur on the host PC
are virtualy the same as on the targeted
microprocessor.

In Production Code Target Simulation Mode, the
TargetLink-generated control algorithm is computed on a
microcontroller that is equivalent to those on the
production ECUs (processor-in-the-loop). Simulink still
provides the stimuli, i.e., the input signals for the
controller, for example, computed by the plant model,
and evaluates the outputs. These signals are sent to and
received from the target microcontroller by the serial
interface of the PC. Again, this is accomplished by an s-
function that replaces the original controller. Using the
Production Code Target Simulation Mode, final
verification of the generated production code can be
made under realistic closed-loop operating conditions.
The output of the target compiler can be verified
because it is part of the test loop.

These advantages must remain unchanged when code
is generated for OSEK. The original production code,
now including OSEK API calls, shall be used for

simulation. To achieve this TargetLink provides the
following mechanisms.

SIMULATION WITHOUT AN OSEK OPERATING
SYSTEM

Even if no commercial OSEK operating system is
available on the target, the code must be tested in
simulation without any changes. To make that possible,
TargetLink creates additional code that implements - in a
simple way - all OSEK macros and API functions used
by the generated application code. These OSEK macros
and API functions do not necessarily have to form a
complete real-time operating system. They are tailored
to the special needs of this non real-time closed-loop
simulation.

During simulation, it is known at each time step which
task is to be executed. For production code target
simulation, a corresponding ‘activate task' command is
sent to the target (by the s-function). It is not necessary
to have a complete scheduler on the target. A simple
scheduler substitute can call the task like an ordinary C
function. This is because the effects that task execution
time can have on scheduling cannot be reproduced
during offline simulation. While the task executes on the
target, the host waits for a response, and the simulation
time is halted. Therefore no other task becomes active
and no preemptive scheduler is needed.

The Production Code Host Simulation Mode is very
similar to the Production Code Target Simulation Mode.
As in production code target simulation, the generated
code remains unchanged. Unlike target simulation, the
production code and the simulation frame consisting of
the generated OSEK API functions and macros are part
of the s-function. Instead of sending the input data to the
target, the s-function calls the simulation frame which
then activates the tasks.

SIMULATION INCLUDING AN OSEK OPERATING
SYSTEM

The most realistic simulation results can be achieved if
each software module in the final application is already
included in the simulation. From this point of view, it is
useful for the original OSEK operating system to be part
of the production code target simulation. Thus correct
interaction between the automatically generated code
and the OS can be verified. Since the simulation
remains non real-time and the simulation progress of the
model part that remains on the PC - e.g., the plant
model - determines the simulation time, the operating
system on the target must be disconnected from its real-
time inputs. The host PC, i.e., Simulink, must provide
these stimuli, for example, hardware timer values,
interrupts, etc., in accordance with the current simulation
time (see Figure 10).

Let us assume an application with two periodic tasks;
one with a sample rate of 10ms and the other with a rate
of 100ms. Corresponding alarms are assigned to the
system timer. Whenever the system timer reaches

10

values that are multiples of 10ms and 100ms
respectively, the corresponding task is activated. For
simulation, the system timer is disconnected from its
hardware timebase. Without any host intervention it
does not count up and target simulation idles. When the
simulation time in Simulink reaches 10ms (20ms,
30ms,...), the PC forces the target to set the system
timer to the corresponding value, and the original OSEK
task activation mechanism starts. After the task has
finished, the computation results are sent back to the
PC. The communication with the host is accomplished
by a low-priority idle task.

Because the system time used on the target is simulated
by Simulink and the host- PC sends input data and timer
commands only after the previous simulation step was
completed, the simulation does not run in real time. The
main benefit of this new kind of simulation is the
verification of counter and alarm handling, event and
message handling, task activation and task interaction.

S-Function

Iy

—>

Velocity
damping

| Plant
I b S Host PC -
i Controller
Controller Output T Code
Controller Input ; OSEK
Synchronisation

Figure 10: Target Simulation with an OSEK OS

TARGET SPECIFIC CODE GENERATION FOR
COMMERCIAL OSEK IMPLEMENTATIONS

As previously mentioned, the OSEK specification leaves
a certain amount of flexibility to allow optimal adaptation
to different microcontrollers. As a consequence, different
OSEK vendors implement some functionality in different
ways, even if the implementation is for the same
microcontroller.

An example is the API functions for counter access.
There is no standard API function to read the system
time. Therefore, the code for the same application
appears slightly different for different OSEK
implementations. Wherever possible, TargetLink uses
standard OSEK API functions in the generated code.
But when necessary, TargetLink uses implementation-

specific API functions to ensure efficient and readable
application code.

Cooperation between major OSEK vendors and
dSPACE ensures the best TargetLink support for the
different OSEK implementations.

Another area of incompatibility is the possible OIL
attributes for OSEK objects. Here the OS vendors
usually provide a lot more options than described in the
standard. For example, tasks have several additional
attributes and the user might want to specify these
attributes at the same place where an individual
specifies the standard attributes, i.e., in the TargetLink
Task block. TargetLink therefore provides a mechanism
to identify these extensions to the standard and let the
user enter the desired options. The key for this feature is
again the OIL file. OSEK dictates that each vendor
describes even the non-standard attributes by name and
possible values in OIL syntax. TargetLink analyzes this
description and provides the necessary GUI where the
user can, for example, specify the stack mechanism for
a task.

When the user wants to port an application from one
OSEK implementation to another, TargetLink
automatically replaces the implementation-specific API
calls (such as the counter accesses) and the specific
OIL attributes. This increases portability. Although
OSEK was specified mainly to facilitate the reuse of
software, these jobs would have to be done manually if
no automatic code generator were available.

CONCLUSION

A steadily increasing number of development
departments from different automotive areas are using
Matlab/Simulink, one of the standard tools for the control
engineer, as a specification basis for the entire
development cycle of electronic control units. This is
made possible in particular by the availability of tools
such as TargetLink, which can automatically generate
production-ready C code that has proven itself equal to
handwritten programs. For the implementation of

11

complete applications, the connection to a real-time
operating system, in particular to the widespread OSEK
standard, is of elementary importance. This paper has
shown how TargetLink maps the basic modeling
concepts of Simulink onto the OSEK functionality. The
function developers can continue working in their familiar
environment, which has proven its suitability in
innumerable applications all over the world, and
additionally get the flexibility and adaptability necessary
for embedded software development. Some extensions
to the standard Simulink blockset that make all important
OSEK services and properties available in the model
and that are optimally adjusted to the Simulink
philosophy were introduced. It was shown, despite some
divergent opinions, that Simulink together with the
described environment extension is very well suited to
modeling embedded software systems.

REFERENCES

[1] OSEK/VDX Operating System, Version 2.1,
May 2000

[2] OSEK/VDX System Generation OIL: OSEK

Implementation Language, Version 2.2, July 2000

[3] OSEK/VDX Communication, Version 2.2.1,
September 2000

[4] TargetLink Production Code Generation Guide,
dSPACE GmbH Paderborn Germany, May 2000

[5] Simulink User’'s Guide, The MathWorks, Nattick, MA
USA 1999

[6] H. Hanselmann, U. Kiffmeier, L. Koster, M. Meyer,
“Automatic Generation of Production Quality Code
for ECUs”, SAE 99, March 1-4, Detroit

CONTACT

Dr. Lutz Koster
dSPACE GmbH
33100 Paderborn
Ikoester@dspace.de

Lead Engineer Software
Technologiepark 25
Germany
http://www.dspace.de

OSEK/VDX Homepage: http://www.osek-vdx.org/

dSPACE
vy 4

Headquarters in Germany

dSPACE GmbH
Technologiepark 25
33100 Paderborn

Tel.: +4952511638-0
Fax: +495251 66529
info@dspace.de
www.dspace.de

United Kingdom
dSPACE Ltd.

2nd Floor Westminster House
Spitfire Close

Ermine Business Park
Huntingdon
Cambridgeshire PE29 6XY
Tel.: +44 1480 410700
Fax: +44 1480 410701
info@dspace.ltd.uk
www.dspace.ltd.uk

USA and Canada

dSPACE Inc.

28700 Cabot Drive - Suite 1100
Novi - M| 48377

Tel.: +1 248 567 1300

Fax: +1 248 567 0130
info@dspaceinc.com
www.dspaceinc.com

France

dSPACE SARL

Parc Burospace

Batiment 17

Route de la Plaine de Gisy
91573 Biévres Cedex
Tel.:+33 16935 5060
Fax:+33 169355061
info@dspace.fr
www.dspace.fr

